Find the radius of curvature of a particle

PlickPlock
Messages
3
Reaction score
0

Homework Statement


A particle is moving on a path parameterized as such:
$$x(t)=a\sinωt \quad y(t)=b\cosωt$$
Find the radius of curvature ρ as a function of time. Give your answer in Cartesian coordinates.

Homework Equations



$$\frac{1} {Radius~of~curvature}=|\frac{de_t}{ds}| $$, where et is the unit tangent vector and s the path length.

The Attempt at a Solution


$$\frac{de_t}{ds}=\frac{de_t}{dt}\frac{dt}{ds}=\frac{1}{v}\frac{de_t}{dt}$$, where v is the speed.
$$\frac{de_t}{dt}=\frac{d}{dt}\frac{\vec v}{v}$$ so$$|\frac{de_t}{ds}|=\frac{1}{v^2}|{\vec a}|$$
Evaluating the derivative gives me $$\frac{\sqrt{a^2ω^4sin^2ωt+b^2ω^4cos^2ωt}}{a^2ω^2cos^2ωt+b^2ω^2sin^2ωt}$$ which is wrong. At which step did I make a mistake?
 
Physics news on Phys.org
PlickPlock said:

Homework Statement


A particle is moving on a path parameterized as such:
$$x(t)=a\sinωt \quad y(t)=b\cosωt$$
Find the radius of curvature ρ as a function of time. Give your answer in Cartesian coordinates.

Homework Equations



$$\frac{1} {Radius~of~curvature}=|\frac{de_t}{ds}| $$, where et is the unit tangent vector and s the path length.

The Attempt at a Solution


$$\frac{de_t}{ds}=\frac{de_t}{dt}\frac{dt}{ds}=\frac{1}{v}\frac{de_t}{dt}$$, where v is the speed.
$$\frac{de_t}{dt}=\frac{d}{dt}\frac{\vec v}{v}$$ so$$|\frac{de_t}{ds}|=\frac{1}{v^2}|{\vec a}|$$
Evaluating the derivative gives me $$\frac{\sqrt{a^2ω^4sin^2ωt+b^2ω^4cos^2ωt}}{a^2ω^2cos^2ωt+b^2ω^2sin^2ωt}$$ which is wrong. At which step did I make a mistake?
I'm not sure where you got your definition of the radius of curvature from, but this article contains an alternate formulation:

http://mathworld.wolfram.com/RadiusofCurvature.html

The osculating circle is given by these coordinates (parametrically):

https://en.wikipedia.org/wiki/Osculating_circle
 
Thanks; that formulation is much easier to work with.
As for the definition I used, it was illustrated using a circle. The full equation would be:
$$|\frac{de_Θ}{ds}|=\frac{1}{R}e_r$$
, where $$e_Θ \quad and \quad e_r$$ are the unit tangent vector and unit normal vector respectively.
What I gleaned from watching online tutorials is that the rate of change of the direction of motion w.r.t path length gives the curvature.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top