MHB Find the roots of f(x)+g(x)+h(x) = 0.

  • Thread starter Thread starter Aryan Pandey1
  • Start date Start date
  • Tags Tags
    Roots
AI Thread Summary
The discussion centers on finding the roots of the equation f(x) + g(x) + h(x) = 0, where f(x), g(x), and h(x) are quadratic polynomials with positive leading coefficients and real, distinct roots. Each polynomial shares a common root with at least one other, leading to the formulation of f(x), g(x), and h(x) in terms of their roots. The combined polynomial is expressed in standard quadratic form, allowing the application of the quadratic formula to find the roots. The coefficients A, B, and C are derived from the roots and constants associated with each polynomial. The discussion concludes with a focus on the algebraic approach to solving the problem, acknowledging the potential for a more elegant solution.
Aryan Pandey1
Messages
1
Reaction score
0
Let f(x) , g(x) and h(x) be the quadratic polynomials having positive leading coefficients an real and distinct roots. If each pair of them has a common root , then find the roots of f(x)+g(x)+h(x) = 0.
 
Mathematics news on Phys.org
Aryan Pandey said:
Let f(x) , g(x) and h(x) be the quadratic polynomials having positive leading coefficients an real and distinct roots. If each pair of them has a common root , then find the roots of f(x)+g(x)+h(x) = 0.

Looked at this problem off and on for the last few days trying to come up with some elegant solution. Failed in that endeavor and resorted to grunt work algebra to determine a solution. Please note that this does not mean an "elegant", simple solution doesn't exist.

let $f(x)=a(x-r_1)(x-r_2)$
$g(x) = b(x-r_2)(x-r_3)$,
and $h(x) = c(x-r_1)(x-r_3)$
where $a$, $b$, and $c$ are arbitrary positive constants and $r_1$, $r_2$, and $r_3$ are the real, distinct roots.

$f(x)+g(x)+h(x) = (a+b+c)x^2 - [a(r_1+r_2)+b(r_2+r_3)+c(r_1+r_3)]x+(ar_1r_2+br_2r_3+cr_1r_3)$

quadratic formula ...

$x = \dfrac{-B \pm \sqrt{B^2-4AC}}{2A}$, where

$A = (a+b+c)$
$B = -[a(r_1+r_2)+b(r_2+r_3)+c(r_1+r_3)]$
$C = (ar_1r_2+br_2r_3+cr_1r_3)$
 
Last edited by a moderator:
$$(px-a)(qx-b)+(px-a)(rx-c)+(qx-b)(rx-c)=0$$

$$R=\left(\frac ap,\frac bq\right),\,\left(\frac ap,\frac cr\right),\,\left(\frac bq,\frac cr\right)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top