MHB Find the sum of 5a, 25b, 125c and 625d

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The problem involves finding the sum of 5a, 25b, 125c, and 625d given the equations involving real numbers a, b, c, and d. By evaluating the polynomial f(x) at specific points and forming a triangular difference table, the fourth differences are found to be constant. Extending the table reveals that f(5) equals -60. Thus, the final result for the sum 5a + 25b + 125c + 625d is -60. The solution was confirmed by multiple participants in the discussion.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a,\,b,\,c,\,d$ are real numbers such that

$a+b+c+d=5$

$2a+4b+8c+16d=7$

$3a+9b+27c+81d=11$

$4a+16b+64c+256d=1$

Evaluate $5a+25b+125c+625d$.
 
Mathematics news on Phys.org
[sp]Let $f(x) = ax + bx^2 + cx^3 + dx^4$. Then we know that $f(0) = 0$, $f(1) = 5$, $f(2) = 7$, $f(3) = 11$ and $f(4) = 1.$ Suppose we form the repeated differences between these values, in a triangular table like this (where each element, apart from those in the top row, is the difference between the two elements above it):

$$\begin{array}{ccccccccc} 0&&5&&7&&11&&1 \\ &5&&2&&4&&-10& \\ &&-3&&2&&-14&& \\ &&&5&&-16&&& \\ &&&&-21&&&& \end{array}$$

Since $f(x)$ is a fourth-degree polynomial, its fourth differences must be constant, so we can extend the table, from the bottom row upwards, knowing that the elements in the bottom row must all be $-21$. The extended table looks like

$$\begin{array}{ccccccccccc} 0&&5&&7&&11&&1&& \color{red}{-60} \\ &5&&2&&4&&-10&& \color{red}{-61}& \\ &&-3&&2&&-14&& \color{red}{-51}&& \\ &&&5&&-16&& \color{red}{-37}&&& \\ &&&&-21&& \color{red}{-21}&&&& \end{array}$$

By the time we get back up to the top row, we see that $f(5) = -60$.[/sp]
 
Bravo, Opalg! Your answer is correct and I solved the problem using the similar approach as well!(Sun)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top