MHB Find the sum of all values of positive integer a

AI Thread Summary
The function Q(a, b) is defined as Q(a, b) = (a^2b + 2ab^2 - 5) / (ab + 1). The goal is to find all pairs of positive integers (a, b) for which Q(a, b) is an integer. The discussion focuses on determining the conditions under which the numerator is divisible by the denominator. By analyzing the expression, participants explore various values of a and b to identify valid pairs. Ultimately, the task is to calculate the sum of all positive integer values of a from these pairs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For a pair of positive integers $(a,\,b)$, $Q(a,\,b)$ is defined by

$Q(a,\,b)=\dfrac{a^2b+2ab^2-5}{ab+1}$.

Let $(a_1,\,b_1),\,(a_2,\,b_2),\,\cdots, (a_n,\,b_n)$ be all pairs of positive integers such that $Q(a,\,b)$ is an integer. Calculate $\displaystyle \sum_{i=1}^n a_i$,
 
Mathematics news on Phys.org
If $ab+1$ divides $a^2b + 2ab^2 - 5$ then it also divides $(a+2b)(ab+1) - (a^2b + 2ab^2 - 5) = a+2b+5$.

So suppose that $a+2b+5 = k(ab+1)$ for a positive integer $k$. Then $k^2ab - ka - 2kb = 5k - k^2$. Therefore $$(ka-2)(kb-1) = 2 + 5k - k^2.$$ If $k=1$ then $(a-2)(b-1) = 6$. The four possible factorisations of $6$ give solutions $(a,b) = (3,7),\, (4,4),\, (5,3),\, (8,2)$.

If $k=2$ then $(2a-2)(2b-1) = 8$, or $(a-1)(2b-1) = 4$, giving only one solution $(a,b) = (5,1)$ (because $2b-1$ must be odd).

If $k=3$ then $(3a-2)(3b-1) = 8$, giving solutions $(1,3)$ and $(2,1)$.

If $k=4$ then $(4a-2)(4b-1) = 6$, or $(2a-1)(4b-1) = 3$, giving the solution $(1,1)$.

If $k=5$ then $(5a-2)(5b-1) = 2$, which has no solutions in positive integers.

If $k\geqslant6$ then $2+5k-k^2$ is negative, so there can be no more solutions.

So in total there are eight pairs of positive integers for which $Q(a,b)$ is an integer, namely $$(a,b) = (1,1),\ (1,3),\ (2,1),\ (3,7),\ (4,4),\ (5,1),\ (5,3),\ (8,2).$$ The sum of their $a$-coordinates is $\displaystyle\sum_{i=1}^8 a_i = 1+1+2 +3 +4 +5 +5 +8 = 29.$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top