MHB Find unknowns in equation going from perfect square? to quadratic format?

AI Thread Summary
The discussion focuses on solving the equation $$(6x+2z)^2-64=(ax+2z+8)(-8+bx+cz)$$ for positive constants a, b, and c. The original poster attempted to expand and equate coefficients but arrived at incorrect values. A suggested method involves equating coefficients from both sides after expanding the equation correctly. The correct values for a, b, and c are identified as a = 6, b = 6, and c = 2. This approach emphasizes the importance of ensuring the equation holds true for all variables involved.
danielw
Messages
5
Reaction score
0
Hi all

I'm trying to work out how to answer this type of problem.

$$(6x+2z)^2-64=(ax+2z+8)(-8+bx+cz)$$ where a, b and c > 0

I have attempted the problem by expanding the brackets:

$$=36x^2+24xz+4z^2-64$$

This is the same as $$(6x+2z)^2-(8)^2$$

Then subtracting from either 'side' of the quadratic and multiplying the result:

$$=((6x+2z)-8)*((6x+2z)+8)$$

So visually comparing these results I got
$$a=6\\
b=2\\
c=2$$

But this is wrong.

I think my method may be wrong.

I'm looking for guidance on how to solve this kind of problem.

I hope one of you can help.

Many thanks

Daniel
 
Mathematics news on Phys.org
Hi danielw and welcome to MHB! :D

The method you're using is usually called "equating coefficients" and it's a good approach. Review your work and try $a=b=6,\,c=2$.
 
Note that, in order to be able to solve for a, b, and c, the equation must be true for all x and y.
 
danielw said:
\text {Solve for }a,b,c: \;(6x+2z)^2-64\:=\: (ax+2z+8)(bx+cz-8)
\text{Expand: }\;36x^2 +24xz + 4z^2 - 64 \;=\;abx^2 + acxz - 8ax + 2bxz +2cz^2 - 16z + 8bx + 8cz - 64

\text{Equate coefficients: }\;\;36 \:=\:ab, \quad 24 \:=\:ac + 2b, \quad 4 \:=\:2c, \quad 8b-8a - 0, \quad 8c - 16 \:=\:0

\text{And we get: }\;\;\boxed{ a = 6,\;b = 6,\;c = 2}
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top