MHB Finding $a$ and $b$ for $f(x)=|\lg (x+1)|$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around finding the values of real numbers $a$ and $b$ such that $b > a$, given the function $f(x) = |\lg(x+1)|$. The conditions state that $f(a) = f\left(-\frac{b+1}{b+2}\right)$ and $f(10a + 6b + 21) = 4\lg 2$. Participants are attempting to solve for $a$ and $b$, but initial guesses, such as $a = 0$ and $b = -1$, are incorrect. The thread emphasizes the need for accurate calculations to satisfy the function's properties and the specified conditions. The search for the correct values continues among the contributors.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $f(x)=|\lg (x+1)|$ and real numbers $a$ and $b$ where $b>a$ satisfy $f(a)=f\left(-\dfrac{b+1}{b+2}\right)$ and $f(10a+6b+21)=4\lg 2$.

Find the values of $a$ and $b$.
 
Mathematics news on Phys.org
anemone said:
Suppose $f(x)=|\lg (x+1)|$ and real numbers $a$ and $b$ where $b>a$ satisfy $f(a)=f\left(-\dfrac{b+1}{b+2}\right)$ and $f(10a+6b+21)=4\lg 2$.

Find the values of $a$ and $b$.
[sp]is the answer a=0 b=-1[/sp]
 
Sorry, solakis, those are not the values for $a$ and $b$.
 
If $f(x)=f(y)$ then $\log(x+1) =\pm \log(y+1)$. Apart from the obvious solution $y=x$, that has the solution $y+1 = \dfrac1{x+1}$. Given that $f(a) = f\left(-\dfrac{b+1}{b+2}\right)$, it follows that either $-\dfrac{b+1}{b+2}=a$ or $-\dfrac{b+1}{b+2}+1 = \dfrac1{a+1}$. The second of those two possibilities leads to solakis's suggestion $a=0$, $b=-1$, which would be a solution apart from the fact that it does not satisfy the condition $b>a$.

So we have to look at the possibility $a = - \dfrac{b+1}{b+2}$. The equation $f(10a+6b+21) = 4\log2$ then says that $\log\left(-\tfrac{10(b+1)}{b+2} + 6b + 22\right) = \pm\log16$. Therefore $-\tfrac{10(b+1)}{b+2} + 6b + 22 = 16 $ or $\tfrac1{16}$.

If $-\tfrac{10(b+1)}{b+2} + 6b + 22 = 16 $ then $(b+1)\bigl(-10+ 6(b+2)\bigl) = 0$. That again has the unwanted solution $b=-1$, but it also has the solution $b+2 = \frac{10}6$, from which $b=-\frac13$. The corresponding value of $a$ is $-\frac25$.

(There was also the possibility that possibility that the equation $-\tfrac{10(b+1)}{b+2} + 6b + 22 = \tfrac1{16} $ might lead to a solution. But in fact that equation has no real solutions.) So the solution is $\boxed{a=-\dfrac25,\ b=-\dfrac13}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
10
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Back
Top