MHB Finding $\angle APB$ in $PQR$ Triangle with $QA:AB:BR = 3:5:4$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
AI Thread Summary
In triangle PQR, where angle P is 90 degrees and PQ equals PR, points A and B divide segment QR in the ratio 3:5:4. Using the cosine rule, the lengths of sides AP and BP were calculated based on the given segment lengths. The calculations yielded that angle APB equals 45 degrees. The discussion also included an alternative geometric approach to solving the problem. The final conclusion confirms that angle APB is indeed 45 degrees.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $PQR$ be a triangle with $\angle P=90^{\circ}$ and $PQ=PR$. Let $A$ and $B$ be points on the segment $QR$ such that $QA:AB:BR=3:5:4$. Find $\angle APB$.
 
Mathematics news on Phys.org
anemone said:
Let $PQR$ be a triangle with $\angle P=90^{\circ}$ and $PQ=PR$. Let $A$ and $B$ be points on the segment $QR$ such that $QA:AB:BR=3:5:4$. Find $\angle APB$.
[sp]
If $QA=3$, $AB=5$ and $BQ=4$ then the other two sides of the triangle $PQR$ will both be $6\sqrt2$ units.Cosine rule in triangle $PQA$: $AP^2 = 9 + 72 - 2\cdot 3\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 45$.

Cosine rule in triangle $PRB$: $BP^2 = 16 + 72 - 2\cdot 4\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 40$.

Cosine rule in triangle $APB$: $\cos\alpha = \dfrac{40 + 45 - 25}{2\cdot\sqrt{40}\cdot\sqrt{45}} = \dfrac1{\sqrt2}$.

Therefore $\alpha = 45^\circ$.[/sp]
 

Attachments

  • cosine.png
    cosine.png
    2.3 KB · Views: 104
Opalg said:
[sp]
If $QA=3$, $AB=5$ and $BQ=4$ then the other two sides of the triangle $PQR$ will both be $6\sqrt2$ units.Cosine rule in triangle $PQA$: $AP^2 = 9 + 72 - 2\cdot 3\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 45$.

Cosine rule in triangle $PRB$: $BP^2 = 16 + 72 - 2\cdot 4\cdot 6\sqrt2\cdot\dfrac1{\sqrt2} = 40$.

Cosine rule in triangle $APB$: $\cos\alpha = \dfrac{40 + 45 - 25}{2\cdot\sqrt{40}\cdot\sqrt{45}} = \dfrac1{\sqrt2}$.

Therefore $\alpha = 45^\circ$.[/sp]
Well done Opalg (Yes) and thanks for participating!

Here is another approach that tackles the problem using the geometry route that I want to share with you:
View attachment 3122

Here is another approach that tackles the problem using the geometry route that I want to share with you:

If we rotate the triangle $PQR$ about $P$ by $90^{\circ}$, the point $Q$ goes to $R$.

Let $A'$ represent the image of point $A$ under this rotation. Then we have

$RA'=QA$ and $\angle PRA'=\angle PQR=45^{\circ}$ so $BRA'$ is a right-angled triangle with $RB:RA'=4:3$, $\therefore A'B=BA$.

It follows that $PABA"$ is a kite with $PA'=PA$ and $AB=BA'$. Therefore $PB$ is the angle bisector of $\angle APA'$. This implies $\angle APB=\dfrac{\angle APA'}{2}=45^{\circ}$.
 

Attachments

  • Find angle APB.JPG
    Find angle APB.JPG
    12.7 KB · Views: 120
anemone said:
Let $PQR$ be a triangle with $\angle P=90^{\circ}$ and $PQ=PR$. Let $A$ and $B$ be points on the segment $QR$ such that $QA:AB:BR=3:5:4$. Find $\angle APB$.
let point Q be the origin so we may construct the following :
Q(0,0),A(3,0),B(8,0),R(12,0) and P(6,6)
slope of PA=2
slope of PB=-3
and we have :tan ($\angle $ APB)=1
that is $\angle $APB=$45^o$
 
Last edited:
Albert said:
let point Q be the origin so we may construct the following :
Q(0,0),A(3,0),B(8,0),R(12,0) and P(6,6)
slop of PA=2
slop of PB=-3
and we have :tan ($\angle $ APB)=1
that is $\angle $APB=$45^o$

Good job, Albert! And thanks for participating!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top