MHB Finding $\angle QCA$ from Altitude $AM$ of Triangle $ABC$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Altitude Triangle
AI Thread Summary
To find angle QCA in triangle ABC with point Q on altitude AM, given angles QBA at 20 degrees, QBC at 40 degrees, and QCB at 30 degrees, the problem requires applying triangle angle properties. The sum of angles in triangle QBC can be used to determine angle QCA. By calculating the remaining angles, angle QCA is found to be 90 degrees minus the sum of angles QBA and QBC. The solution confirms the relationships between the angles and the properties of the triangle. The discussion emphasizes the importance of understanding triangle geometry to solve for unknown angles.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $Q$ is a point on the altitude $AM$ of triangle $ABC$, and that $\angle QBA=20^{\circ}$, $\angle QBC=40^{\circ}$ and $\angle QCB=30^{\circ}$, find $\angle QCA$.
 
Mathematics news on Phys.org
anemone said:
If $Q$ is a point on the altitude $AM$ of triangle $ABC$, and that $\angle QBA=20^{\circ}$, $\angle QBC=40^{\circ}$ and $\angle QCB=30^{\circ}$, find $\angle QCA$.
Point Q must be the orthocenter of
$\triangle ABC $
we have :$\angle QCA+30+40=90$
$\therefore \angle QCA=20^o$
 
Albert said:
Point Q must be the orthocenter of
$\triangle ABC $
we have :$\angle QCA+30+40=90$
$\therefore \angle QCA=20^o$

Well done, Albert! Well done!(Yes) And thanks for participating!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top