MHB Finding $\dfrac{AC}{BD}$ of a Trapezoid $ABCD$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Trapezoid
Albert1
Messages
1,221
Reaction score
0
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$
 
Mathematics news on Phys.org
Albert said:
A trapezoid $ABCD$ , $BC//AD ,\,\, \angle A=90^o$ , $AC\perp BD$

given :$\dfrac {BC}{AD}=k$

find :$ \dfrac {AC}{BD}$

Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
 
mente oscura said:
Hello.

If \ \angle{A}=90º \ and \ \overline{BC} // \overline{AD} \rightarrow{}\angle{B}=90º

If \ \overline{BC} // \overline{AD} \rightarrow{}\angle{ADB}=\angle{DBC}= \alpha

\sin{\alpha}=\dfrac{\overline{AB}}{\overline{BD}}=\dfrac{\overline{BC}}{\overline{AC}}

\cos{\alpha}=\dfrac{\overline{AB}}{\overline{AC}}=\dfrac{\overline{AD}}{\overline{BD}}

Therefore:

\overline{AB}=\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}

\overline{AB}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}

\dfrac{\overline{BC} \ \overline{BD}}{\overline{AC}}=\dfrac{\overline{AD} \ \overline{AC}}{\overline{BD}}\dfrac{\overline{BC}}{\overline{AD}}= \dfrac{(\overline{AC})^2}{(\overline{BD})^2}=k

Therefore:

\dfrac{\overline{AC}}{\overline{BD}}=\sqrt{k}

Regards.
very good :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top