MHB Finding Squares in a Square Box: n > 1

AI Thread Summary
The discussion focuses on identifying integers n greater than 1 for which an n x n square can be filled with distinct integers, ensuring that the sums of each row and column are perfect squares and all 2n sums are unique. Participants express confusion about the problem's complexity and request examples for clarity. An example is needed to illustrate the concept effectively. The challenge lies in both the mathematical constraints and the uniqueness of the sums. Clear examples would greatly aid understanding of this intricate problem.
Anita6363
Messages
2
Reaction score
0
Determine all integers n> 1, for which in the square box of dimensions (n x n) you can enter different squares of integers, so that the sum of numbers in each row and in each column of the array is a square of an integer, and all the 2n sums are different.
 
Mathematics news on Phys.org
I get a headache reading that...
can you PLEASE post an example...merci beaucoup...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top