Finding the angle of an inclined plane

AI Thread Summary
The problem involves a sled sliding down a slope at a constant velocity, with a kinetic friction coefficient of μk = 0.050. The calculations show that the angle θ is derived from the equation tanθ = μ, leading to an angle of approximately 2.7°, which seems low. It is noted that this angle appears shallow because the static friction coefficient is typically higher, around 0.1-0.15, suggesting the sled may have been nudged to start moving. The conclusion affirms that the calculated angle is correct given the conditions.
Mitza
Messages
5
Reaction score
0
So here's the problem:

A sled slides down a long snow-covered slope that is at an angle θ to the horizontal. Kinetic friction acts on the sled as it slides where the kinetic coefficient of friction between the sled and snow is μk = 0.050. Ignore air-resistance when solving this problem.

If we observe the sled to be traveling at a constant velocity, what is θ? (in degrees)

So far I've drawn a force diagram and done this;
∑F= ma
∑F= 0
mgsinθ - μmgcosθ = 0
mgsinθ = μcosθ
tanθ = μ
arctanμ = θ

I know I've done something wrong because with that working the final angle is 2.9° which seems far too small.

Thanks in advance for any help!
 
Last edited:
Physics news on Phys.org
Mitza said:
So here's the problem:

A sled slides down a long snow-covered slope that is at an angle θ to the horizontal. Kinetic friction acts on the sled as it slides where the kinetic coefficient of friction between the sled and snow is μk = 0.050. Ignore air-resistance when solving this problem.

If we observe the sled to be traveling at a constant velocity, what is θ? (in degrees)

So far I've drawn a force diagram and done this;
∑F= ma
∑F= 0
mgsinθ - μmgcosθ = 0
mgsinθ = μcosθ
tanθ = μ
arctanμ = θ

I know I've done something wrong because with that working the final angle is 2.7° which seems far too small.

Thanks in advance for any help!
Your answer is correct.
It probably seems too shallow because the static coefficient is a lot higher, more like 0.1-0.15. So you have to assume the sled was given a nudge to get it started.
 
haruspex said:
Your answer is correct.
It probably seems too shallow because the static coefficient is a lot higher, more like 0.1-0.15. So you have to assume the sled was given a nudge to get it started.
Okay thank you for your response!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top