MHB Finding the equation of vertex of right angle triangle

AI Thread Summary
The discussion focuses on finding the equation relating the coordinates (x, y) of the vertex of a right-angled triangle, where the hypotenuse endpoints are at (6,0) and (0,8). The gradient of the hypotenuse is calculated as 4/3, leading to a perpendicular gradient of -3/4 for the line through the vertex. The midpoint of the hypotenuse is identified as (3,4), and substituting this into the line equation yields y = -3/4 x + 25/4. Additionally, the locus of all possible vertices forms a circle with a center at (3,4) and a radius of 5, resulting in the equation (x-3)² + (y-4)² = 25. This comprehensive approach effectively determines the relationship between x and y for the triangle's vertex.
hb2325
Messages
19
Reaction score
0
Points (6,0) and (O,8) are the endpoints of the hypotenuse of a
right-angled triangle, whose other vertex is at (x,y). What equation relates x
and y?Attempt at solution:

So What I am thinking is that the line will be perpendicular to the line with end points 6,0 and 0,8.

So The gradient of this line is 4/3, hence the gradient of the other line perpendicular to this one will be -3/4

So the equation relating X and y is y = -3/4 x + c ?

Now can I assume that given line is a perpendicular bisector to the hypotenuse and so interesects it at 3,4 (mid point) and hence substitue for c - which i get to 25/4

So y = -3/4 x + 25/4 , This kinda feels wrong and I would appreciate input.

Thanks.
 
Mathematics news on Phys.org
hb2325 said:
Points A(6,0) and B(O,8) are the endpoints of the hypotenuse of a
right-angled triangle, whose other vertex is at (x,y). What equation relates x
and y?Attempt at solution:

So What I am thinking is that the line will be perpendicular to the line with end points 6,0 and 0,8.

So The gradient of this line is 4/3, hence the gradient of the other line perpendicular to this one will be -3/4

So the equation relating X and y is y = -3/4 x + c ?

Now can I assume that given line is a perpendicular bisector to the hypotenuse and so interesects it at 3,4 (mid point) and hence substitue for c - which i get to 25/4

So y = -3/4 x + 25/4 , This kinda feels wrong and I would appreciate input.

Thanks.


The locus of all vertices of the right angle is a circle whose diameter is the line segment AB.

1. Midpoint of \overline{AB}~\implies~M_{AB}(3,4)

2. Length of the radius. Use Pythagorean theorem to determine the diameter:

2r = \sqrt{8^2+6^2}=10~\implies~r = 5

3. Equation of the circle is:

(x-3)^2+(y-4)^2 = 25

EDIT: See following post, please!
 

Attachments

  • menge_rwd.png
    menge_rwd.png
    8.8 KB · Views: 103
Last edited:
hb2325 said:
Points A(6,0) and B(O,8) are the endpoints of the hypotenuse of a
right-angled triangle, whose other vertex is at (x,y). What equation relates x
and y?Attempt at solution:

So What I am thinking is that the line will be perpendicular to the line with end points 6,0 and 0,8.

So The gradient of this line is 4/3, hence the gradient of the other line perpendicular to this one will be -3/4

So the equation relating X and y is y = -3/4 x + c ?

Now can I assume that given line is a perpendicular bisector to the hypotenuse and so interesects it at 3,4 (mid point) and hence substitue for c - which i get to 25/4

So y = -3/4 x + 25/4 , This kinda feels wrong and I would appreciate input.

Thanks.


1. Draw a right triangle with AB as hypotenuse. The vertex of the right angle has the coordinates (x, y). |\overline{AB}| = 10

2. Use Pythagorean theorem to calculate the lengthes of the legs k and j of the right triangle:

k^2 = p^2+q^2 = x^2+(8-y)^2

j^2=s^2+t^2 = y^2+(x-6)^2

3. Since

k^2+j^2=100 ... you'll get

x^2+(8-y)^2 + y^2+(x-6)^2 = 100 ... expand the brackets:

x^2+64-16y+y^2 + y^2+x^2-12x+36 = 100

2x^2-12x+ 2y^2-16y = 0

x^2-6x+ y^2-8y = 0 ... complete the squares:

x^2-6x \color{red}{+ 9}+ y^2-8y\color{red}{+ 16} = 0\color{red}{+9+16}

(x-3)^2+(y-4)^2=5^2

This is the equation of a circle around (3,4) with radius r = 5
 

Attachments

  • locus_rechtewinkel.png
    locus_rechtewinkel.png
    6.1 KB · Views: 102
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
3K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
59
Views
2K
Replies
4
Views
1K
Replies
3
Views
3K
Replies
1
Views
1K
Back
Top