- #1
pondzo
- 169
- 0
Homework Statement
Homework Equations
Euler - Lagrange equation:
##\frac{d}{dt}(\frac{\partial L}{\partial \dot\theta})=\frac{\partial L }{\partial \theta}##
Hamilton's equations:
##\frac{\partial H}{\partial \theta}=-p_{\theta}\text{ and }\frac{\partial H}{\partial p_{\theta}}=\dot\theta##
3. The Attempt at a Solution
Part a and b was basically finding the lagrangian of the system, for which i got (and is correct):
##L=\frac{m}{2}[l^2\dot\theta^2+\dot{\tilde{y}}^2+2l\dot{\tilde{y}}\dot{\theta}\sin{\theta}]-mg[\tilde{y}-l\cos{\theta}]##
All of the derivatives rules are getting me confused for part c and d.
##\sin{\theta}\approx \theta \text{ and } \cos{\theta}\approx 1-\frac{1}{2}\theta^2##
New lagrangian with approximation:
##L\approx\frac{m}{2}[l^2\dot\theta^2+\dot{\tilde{y}}^2+2l\dot{\tilde{y}}\dot{\theta}\theta]-mg[\tilde{y}-l+\frac{1}{2}l\theta^2]##
##\textbf{Part C}##
##\frac{\partial L}{\partial \dot\theta}=\frac{m}{2}[2l^2\dot\theta+2l\dot{\tilde{y}}\theta]=ml^2\dot\theta+ml\dot{\tilde{y}}\theta##
##\frac{d}{dt}(\frac{\partial L}{\partial \dot\theta})=ml^2\ddot\theta+ml\ddot{\tilde{y}}\theta+ml\dot{\tilde{y}}\dot\theta##
##\frac{\partial L}{\partial \theta}=ml\dot{\tilde{y}}\dot\theta-mg\theta##
Therefore, Legrange's equation reads:
##ml^2\ddot\theta+ml\ddot{\tilde{y}}\theta+ml\dot{\tilde{y}}\dot\theta=ml\dot{\tilde{y}}\dot\theta-mlg\theta##
Does this look correct?
The last part of question 3 asks us to discuss the physical meaning for arbitrary frequency and for ##\omega\ll 1##. I think this implies that I should put ##\tilde{y}=y_0\sin{\omega t}## into the Euler-Lagrange equation... but then I have a problem of computing ##\dot{\tilde{y}}\text{ and }\ddot{\tilde{y}}##.
Do these look correct?
##\tilde{y}\approx y_o\dot{\theta}t##
##\dot{\tilde{y}}\approx y_0\ddot{\theta}t+y_0\dot\theta##
##\ddot{\tilde{y}} \approx y_0\dddot{\theta}t+y_0\ddot{\theta}+y_0\ddot{\theta}=y_0\dddot{\theta}t+2y_0\ddot{\theta}##
If this is correct, after subbing these into the Euler-Lagrange equation, I'm still not sure of the physical significance of arbitrary omega and when omega is far less than one.
I will not do part D in this same post. Thanks for any help!
Last edited: