- #1
lalbatros
- 1,256
- 2
This weekend I played the game of the perihelion precession in GR.
I started with the Schwarzschild geometry and used the hamilton-jacobi method.
It was quite interresting to compare the integral with the classical counterpart.
The full two-body problem may be more complicated to handle.
Including, even approximately, the fields of two masses and finding out the motion -and- the metric seems to me really much more complicated. Would you know about some paper on such calculations? At least to see how this can be treated.
I have also this related question:
If I treat this two-body problem in GR, how can I match the solution to the real world: how and why can I match this 2-body solution to a practical inertial frame? Where and how in the formulation could the inertial frame pop out? In the Newtonian counter-part the inertial frame is there by hypothesis, if needed inertial forces must be added. But in GR, how does that work?
Thanks
Michel
I started with the Schwarzschild geometry and used the hamilton-jacobi method.
It was quite interresting to compare the integral with the classical counterpart.
The full two-body problem may be more complicated to handle.
Including, even approximately, the fields of two masses and finding out the motion -and- the metric seems to me really much more complicated. Would you know about some paper on such calculations? At least to see how this can be treated.
I have also this related question:
If I treat this two-body problem in GR, how can I match the solution to the real world: how and why can I match this 2-body solution to a practical inertial frame? Where and how in the formulation could the inertial frame pop out? In the Newtonian counter-part the inertial frame is there by hypothesis, if needed inertial forces must be added. But in GR, how does that work?
Thanks
Michel