Finding the inverse of this matrix.

  • Thread starter Thread starter Kuma
  • Start date Start date
  • Tags Tags
    Inverse Matrix
Kuma
Messages
129
Reaction score
0

Homework Statement



Hi there I'm trying to solve this question:

dPs5M.png


Homework Equations





The Attempt at a Solution



I figured i should just multiply them together and show that you get the identity matrix, but I'm having trouble cancelling out some of the terms. I'm not sure if I should write them out in matrix form first or just do them as is?
 
Physics news on Phys.org
Kuma said:

Homework Statement



Hi there I'm trying to solve this question:

dPs5M.png


Homework Equations





The Attempt at a Solution



I figured i should just multiply them together and show that you get the identity matrix, but I'm having trouble cancelling out some of the terms. I'm not sure if I should write them out in matrix form first or just do them as is?
I haven't worked this all the way through, but your idea of multiplying the two expressions seems like the way to go.

Here are a couple of tips that might be helpful. The 1n1n' expressions represent n x n matrices whose entries are all 1's.

The product 1n1n' * 1n1n' works out to be n * 1n1n', which you might need to prove by induction.
 
It says that 1n is a vector of 1's so shouldn't 11' = n?
 
Kuma said:
It says that 1n is a vector of 1's so shouldn't 11' = n?

They probably mean that 1_n is a column vector. Otherwise the dimensions wouldn't agree. Indeed: (1-\rho)I would be a matrix and 1_n1_n^\prime would be a number, so you can't add them.
 
I agree with micromass. 1n has to be a column vector.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top