I Finding the inverse tangent of a complex number

AI Thread Summary
The discussion focuses on finding the arctangent of a complex number, expressed as w = arctan(z), where z = x + iy. A proposed formula involves logarithmic expressions, which the original poster wishes to avoid, seeking results in terms of trigonometric and hyperbolic functions instead. The conversation highlights the transformation of the problem into solving equations involving cosine and sine functions of complex arguments. By applying angle sum identities and recognizing hyperbolic relationships, the discussion derives equations relating the tangent and hyperbolic tangent of the angles. Ultimately, the goal is to express u and v as functions of x and y without relying on logarithmic forms.
bsaucer
Messages
29
Reaction score
0
TL;DR Summary
Inverse Tangent of complex number in rectangular form.
Let z=x+iy, and w=u+iv. I am looking for a formula to find the arctangent of z, or w=arctan(z). I want the results of u and v to be in terms of trigonometric and hyperbolic functions (and their inverses) and not in terms of logarithms. The values u and v should be functions of x and y.
 
Mathematics news on Phys.org
The formula
\tan^{-1}z=\frac{i}{2}\log\frac{i+z}{i-z}
seems useful to me but you do not like logarithm. 
 
Last edited:
If you can get as far as <br /> e^{2iz} = \frac{w + 1}{w - 1} then \begin{split}<br /> \cos 2z &amp;= \frac{w^2 + 1}{w^2 - 1} \\<br /> \sin 2z &amp;= \frac{2w}{w^2 - 1}\end{split} so the problem is reduced to solving <br /> \begin{split}\cos (2x + 2iy) &amp;= A \\ \sin (2x + 2iy) &amp;= B\end{split} for x and y. The left hand sides can be expanded using the angle sum formulae and the identities <br /> \cos 2iy = \cosh 2y, \qquad \sin 2iy = i\sinh 2y. By taking ratios of real and imaginary parts we end up with <br /> \begin{split}<br /> \tan 2x \tanh 2y &amp;= - \frac{ \operatorname{Im} A}{\operatorname{Re} A} \\<br /> \tan 2x \coth 2y &amp;= \frac{ \operatorname{Re} B}{\operatorname{Im} B}\end{split} whence <br /> \begin{split}<br /> \tan^2 2x = -\frac{ \operatorname{Im} A \operatorname{Re} B}{ \operatorname{Re} A \operatorname{Im} B} \\<br /> \tanh^2 2y = -\frac{ \operatorname{Im} A \operatorname{Im} B}{ \operatorname{Re} A \operatorname{Re} B}.\end{split}
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top