Finding the Min of $\dfrac{1}{x}+\dfrac{1}{y}$ Given $x,y>0$ and $9x+4y=2005$

  • MHB
  • Thread starter Albert1
  • Start date
In summary, the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$ is approximately $\dfrac{5}{401}$ when $x = \dfrac{401}{3}$ and $y = \dfrac{401}{2}$. This is found by solving for the minimum of the function $f(x) = \dfrac{1}{x} + \dfrac{1}{y}$ using the given constraint $9x + 4y = 2005$.
  • #1
Albert1
1,221
0
Given:

$x,y>0$ and $9x+4y=2005$, find:

$\min\left(\dfrac{1}{x}+\dfrac{1}{y}\right)$
 
Last edited by a moderator:
Mathematics news on Phys.org
  • #2
Albert said:
Given:

$x,y>0$ and $9x+4y=2005$, find:

$\min\left(\dfrac{1}{x}+\dfrac{1}{y}\right)$

$ \displaystyle \begin{align*} 9x + 4y &= 2005 \\ 4y &= -9x + 2005 \\ y &= \frac{-9x + 2005}{4} \end{align*} $

Substituting into the function [tex]\displaystyle \begin{align*} \frac{1}{x} + \frac{1}{y} \end{align*} [/tex] gives

[tex]\displaystyle \begin{align*} f(x) &= \frac{1}{x} + \frac{1}{y} \\ &= \frac{1}{x} + \frac{1}{ \frac{-9x + 2005}{4} } \\ &= \frac{1}{x} + \frac{4}{-9x + 2005} \\ &= x^{-1} + 4 \left( -9x + 2005 \right)^{-1} \\ \\ f'(x) &= -x^{-2} + 36 \left( -9x + 2005 \right)^{-2} \\ &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2 } \\ 0 &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2} \textrm{ for a minimum } \\ \frac{1}{x^2} &= \frac{36}{\left( -9x + 2005 \right)^2} \\ \left( -9x + 2005 \right)^2 &= 36x^2 \\ 81x^2 - 36\, 090 + 4\, 020 \, 025 &= 36x^2 \\ 45x^2 - 36\, 090 + 4\, 020 \, 025 &= 0 \\ 9x^2 - 7218x + 804\,005 &= 0 \end{align*} [/tex]

Now solve this using the Quadratic Formula, and then substitute this value to find the value of y, and double-check that this is in fact a minimum :)
 
  • #3
Prove It said:
$ \displaystyle \begin{align*} 9x + 4y &= 2005 \\ 4y &= -9x + 2005 \\ y &= \frac{-9x + 2005}{4} \end{align*} $

Substituting into the function [tex]\displaystyle \begin{align*} \frac{1}{x} + \frac{1}{y} \end{align*} [/tex] gives

[tex]\displaystyle \begin{align*} f(x) &= \frac{1}{x} + \frac{1}{y} \\ &= \frac{1}{x} + \frac{1}{ \frac{-9x + 2005}{4} } \\ &= \frac{1}{x} + \frac{4}{-9x + 2005} \\ &= x^{-1} + 4 \left( -9x + 2005 \right)^{-1} \\ \\ f'(x) &= -x^{-2} + 36 \left( -9x + 2005 \right)^{-2} \\ &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2 } \\ 0 &= -\frac{1}{x^2} + \frac{36}{\left( -9x + 2005 \right)^2} \textrm{ for a minimum } \\ \frac{1}{x^2} &= \frac{36}{\left( -9x + 2005 \right)^2} \\ \left( -9x + 2005 \right)^2 &= 36x^2 \\ 81x^2 - 36\, 090 + 4\, 020 \, 025 &= 36x^2 \\ 45x^2 - 36\, 090 + 4\, 020 \, 025 &= 0 \\ 9x^2 - 7218x + 804\,005 &= 0 \end{align*} [/tex]

Now solve this using the Quadratic Formula, and then substitute this value to find the value of y, and double-check that this is in fact a minimum :)

now what is the value of the minimum ?
 
  • #4
Albert said:
now what is the value of the minimum ?

You're not going to bring anything to the party? :P
 
  • #5
The answer is $\dfrac{5}{401}=\dfrac{25}{2005}\approx0.0125$

Now I do it (in a quick way) only by estimation:

$\displaystyle \frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}= \frac{2}{x}$ it will happen when $x=y$.

$\therefore\,9x+4y=13x=2005\,\therefore\,x=\dfrac{2005}{13}$ and the minimum is $\approx\dfrac{26}{2005}\approx0.013$
 
Last edited by a moderator:
  • #6
It is very strange the "LaTeX" in my post shows
normally at day time but reveals
"MATH EXPRESSION ERROR" at night
Can someone give me an aid ?
my best appreciation
Albert
 
Last edited:
  • #7
$ \frac {1}{x}+\frac{1}{y}=\frac{2005+5y}{2005y-4y^2}=g(y)$

find the derivatives of g(y)=g'(y)

let g'(y)=0

we get :

$ 20y^2+8\times2005y-2005^2=0$

(10y-2005)(2y+2005)=0

$\therefore y=\frac {401}{2}\,\,,\,\, x= \frac {401}{3}\,\, (here\,\, x,y >0)$

$ min(\frac {1}{x}+\frac{1}{y})= =\frac {5}{401}$
 

FAQ: Finding the Min of $\dfrac{1}{x}+\dfrac{1}{y}$ Given $x,y>0$ and $9x+4y=2005$

What is the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$?

The minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$ is $\dfrac{1}{25}$.

How do you find the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$?

To find the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$, we can use the method of Lagrange multipliers. This involves finding the critical points of the function $f(x,y)=\dfrac{1}{x}+\dfrac{1}{y}$ subject to the constraint $g(x,y)=9x+4y=2005$. The minimum value will be the smallest critical point that satisfies the constraint.

What are the constraints for finding the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$?

The constraints for finding the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$ are $x>0$, $y>0$, and $9x+4y=2005$. These constraints ensure that the values of $x$ and $y$ are positive and that they satisfy the given linear equation.

Can the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$ be negative?

No, the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$ cannot be negative. Since $x$ and $y$ are both positive, the sum of their reciprocals will always be positive. The minimum value occurs when $x$ and $y$ are at their smallest possible values, which is $\dfrac{1}{25}$.

Are there any other methods for finding the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$?

Yes, there are other methods for finding the minimum value of $\dfrac{1}{x}+\dfrac{1}{y}$, such as using calculus techniques like differentiation and optimization. However, the method of Lagrange multipliers is typically the most efficient and straightforward approach for solving this type of problem.

Similar threads

Back
Top