MHB Finding the Minimum $x$ for a Prime Product

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum value for $x$ where $x\in \mathbb{N} $ and $x^2-x+11$ can be written as a product of 4 primes, which are not necessarily distinct.
 
Mathematics news on Phys.org
The key question to ask is: which primes can occur as factors of $N = x^2 - x + 11$, where $x$ is an integer?
If $x$ is an integer then either $x$ or $x-1$ is even, so $x^2-x = x(x-1)$ is always even and therefore $N = x^2 - x + 11$ is always odd. Thus the prime $2$ can never be a divisor of $N$.

Can the prime $3$ occur as a divisor of $N$? If so then (working mod $3$) $$0 \equiv x^2 - x + 11 \equiv x^2 + 2x + 2 \equiv (x+1)^2 + 1 \pmod3.$$ Therefore $(x+1)^2 \equiv -1\equiv 2 \pmod3$. But that equation has no solutions. In the language of number theory, $2$ is not a quadratic residue mod $3$. Therefore $3$ can never be a prime factor of $N$.

Can the prime $5$ occur as a divisor of $N$? If so then $0 \equiv x^2 - x + 11 \equiv x^2 + 4x + 1 \equiv (x+2)^2 + 2 \pmod5$. Therefore $(x+2)^2\equiv -2\equiv3 \pmod5$. But $3$ is not a quadratic residue mod $5$. Therefore $5$ can never be a prime factor of $N$.

Can the prime $7$ occur as a divisor of $N$? If so, then $0 \equiv x^2 - x + 11 \equiv x^2 + 6x + 4 \equiv (x+3)^2 + 2 \pmod7$. Therefore $(x+3)^2\equiv -2\equiv5 \pmod7$. But $3$ is not a quadratic residue mod $7$. Therefore $7$ can never be a prime factor of $N$.

But the prime $11$ can occur as a divisor of $N$. So can the prime $13$. So the smallest possible candidate for $N$ to be a product of four primes would be if $N = 11^4 = 14641$. However, if $x = 121$ then $x^2 - x + 11 = 121*120 + 11 = 14531 < 14641$, but if $x = 122$ then $x^2 - x + 11 = 122*121 + 11 = 14773 > 14641$. So $11^4$ falls between two values of $x^2 - x + 11$ and therefore does not give a solution to the problem.

The next smallest possible candidate for $N$ is $11^3*13 = 17303$. This time we strike lucky, because if $x=132$ then $x^2 - x + 11 = 132*131 + 11 = 17303$. So the minimum value for $x$ such that $x^2 - x + 11$ is a product of four primes is $x = 132$, and the primes are then $11,11,11,13$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top