Finding the Range & Domain of y = 24 - 2x

  • Thread starter Thread starter okunyg
  • Start date Start date
  • Tags Tags
    Domain Range
AI Thread Summary
The discussion focuses on determining the range and domain of the function y = 24 - 2x. Initially, it is concluded that the domain is 0 < x < 12 and the range is 0 < y < 24, based on the conditions that both x and y must be positive. However, a later comment suggests that the correct domain should be 6 < x < 12 and the range 0 < y < 12, raising questions about a potential misprint in the answer key. The final consensus indicates that the initial conclusions were incorrect. The correct domain and range must be verified against reliable sources.
okunyg
Messages
17
Reaction score
0
I'm sorry for this, but what is the range and domain of the following function?

y = 24 - 2x

y has to be positive (y > 0) and x too (x > 0)

How would you solve this? Do you just need a look and then be able to write it down? Or do you need to solve it with algebra?

I've found that x can only be up to 12, or else y would be negative:

y = 24 - 2x
0 = 24 - 2x
x = 12

What is then the minimum of x?

2x = 24 - y
0 = 24 - y
y = 24

When y is 24, x is zero.

This means:
0 < x < 12

With these values, y is always positive, we have solved the domain of the function.

Is this correct?
 
Last edited:
Mathematics news on Phys.org
okunyg said:
This means:
0 < x < 12

With these values, y is always positive, we have solved the domain of the function.

Is this correct?
That's right.
 
y > 0 implies 24 - 2x > 0 implies x < 12

x > 0 implies 12 - 0.5y > 0 implies y < 24

So: 0 < x < 12

And: 0 < y < 24

Good work. Also, don't apologise for wanting help.
 
Thanks.


But apparently the correct answer is:

6 < x < 12 and
0 < y < 12

Is the key (answer) in the back of the book misprinted perhaps?
 
okunyg said:
Thanks.


But apparently the correct answer is:

6 < x < 12 and
0 < y < 12

Is the key (answer) in the back of the book misprinted perhaps?

yes completely wrong
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top