I Finite difference method for Schrödinger equation

aaaa202
Messages
1,144
Reaction score
2
Suppose I want to solve the time-independent Schrödinger equation
2/2m ∂2/∂x2 + V)ψ = Eψ
using a numerical approach. I then discretize the equation on a lattice of N points such that x=(x1,x2,...,xN) etc. Finally I approximate the second order derivative with the well known central difference formula:
2/∂x2 ≈ 1/Δx2i+1i-1-2ψi)
My question is now: How do you estimate the validity of this approximation? I have already talked to my teacher about it and he said the following:
The discrete approximation is a tight-binding model with dispersion:
E = ħ2/2m * 2/Δx2(1-cos(kΔx))
So for Δx<<1/k we can taylor expand this expression to give:
E ≈ ħ2/2m * 2/Δx2(1-(1-1/2(kΔx)2))=ħ2k2/2m
Which, according to my teacher, shows that the approximation holds provided that the lattice spacing is much shorter than the wavelength. What I don't get is how you can argue that because the dispersion is parabolic in k the finite difference approximation for the derivative ∂2/∂x2 is a good approximation. In short: What "connects" ħ2k2/2m with ħ2/2m ∂2/∂x2?
 
Physics news on Phys.org
aaaa202 said:
In short: What "connects" ħ2k2/2m with ħ2/2m ∂2/∂x2?
You mean apart from the fact that ##p = \hbar k## and ##\hat{p}^2= -\hbar^2 \frac{d^2}{dx^2}##?
 
But k is not an operator in this case. It is a wavenumber. What connects the number form with the operator form?
 
aaaa202 said:
But k is not an operator in this case. It is a wavenumber. What connects the number form with the operator form?
Plane waves. Eigenfunctions of the ##\hat{p}^2## operator are of the form ##\exp(i k x)## where ##k = p/\hbar##, with ##p## the momentum of the corresponding plane wave.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
This is still a great mystery, Einstein called it ""spooky action at a distance" But science and mathematics are full of concepts which at first cause great bafflement but in due course are just accepted. In the case of Quantum Mechanics this gave rise to the saying "Shut up and calculate". In other words, don't try to "understand it" just accept that the mathematics works. The square root of minus one is another example - it does not exist and yet electrical engineers use it to do...
Back
Top