MHB For which n is the term an integer & Calculate the equivalence

AI Thread Summary
The discussion revolves around two mathematical questions. For the expression (2n-1)/(n+7), it is determined that n must be -6, -4, -2, or 8 for the term to be an integer, with additional values of m being -1, -3, -5, and -15 also considered. In the second question, the calculation of 12673^37 mod 5 is confirmed correct, yielding a result of 3. Participants validate each other's work, confirming the completeness of the solutions. Overall, both mathematical problems are addressed with clarity and correctness.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

Question 1: We consider $\frac{2n-1}{n+7}$. For which $n$ is this term an integer? I have done the following:

We set $n+7=m \Rightarrow n=m-7$.

Then we get $$\frac{2n-1}{n+7}=\frac{2(m-7)-1}{(m-7)+7}=\frac{2m-15}{m}$$ So $m$ has to be a divisor of $15$, i.e. $m\in \{1,3,5,15\}$, therefore $n\in \{-6, \ -4, \ -2, \ 8\}$.
Question 2: Calculate $12673^{37}\pmod 5$. I have done the following:

From Euler's theorem we have $x^4\equiv 1\pmod 5$.

Then we get \begin{align*}12673^{9\cdot 4+1}\pmod 5&\equiv \left (12673^{4}\right )^9\cdot 12673 \pmod 5\\ & \equiv 1^9\cdot 12673 \pmod 5\\ & \equiv 12673 \pmod 5\\ & \equiv \left (2534\cdot 5+3\right )\pmod 5\\ & \equiv 3\pmod 5\end{align*}
Is everything correct and complete? :unsure:
 
Mathematics news on Phys.org
Question 2 is correct.

In question 1 we need to take -1, -3, -5, -15 as additional values of m
 
kaliprasad said:
Question 2 is correct.

In question 1 we need to take -1, -3, -5, -15 as additional values of m

Ah yes! Except from that everything else is correct and compelete, right?
 
yes
 
kaliprasad said:
yes

Great! Thank you! â˜ș
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top