Forced oscillations and resonance (bis)

AI Thread Summary
The discussion focuses on clarifying the transition from equations 22.4 to 22.5 in Landau and Lifshitz's "Mechanics," specifically regarding forced oscillations. The general solution is presented as a combination of a homogeneous solution and a particular solution, with emphasis on the confusion surrounding the notation of constants like "a" and "a'." The limit as gamma approaches omega is highlighted, leading to a special solution that is derived from the forced oscillation equation. The author aims to provide clarity for others who may struggle with this section, correcting a previous error in their explanation. This insight is intended to assist future readers in understanding the concepts of forced oscillations and resonance more effectively.
giulioo
Messages
7
Reaction score
0
I'm studying from landau lifšits "mechanics". I had some troubles in section small oscillations-->forced oscillations, especially from eq 22.4 to eq 22.5

i searched the web and came across this:

https://www.physicsforums.com/threads/forced-oscillations-and-ressonance.488538/#post-3236442

this thread does not answer the questions i had. Now I know the answer but the thread is closed and I cannot reply. Therefore i write it here (hoping this is the correct place and that it will be helpful to someone). I'm answering question n 2) since the physical meaning of beta is (as any initial phase) just a traslation in time (question n 1) ).

first of all the general solution to equation 22.2 and 22.3 is 22.4:

$$ x=a \cos(\omega t+ \alpha) + \frac{f}{m (\omega^2-\gamma^2)} \cos (\gamma t +\beta)$$

L&L rewrites this in the form

$$ x= a' cos(\omega t + \alpha) + \frac{f}{m(\omega^2-\gamma^2)} [\cos (\gamma t +\beta)-\cos(\omega t+\beta)]$$
where
$$ a'=\frac{f}{m (\omega^2-\gamma^2)} \frac{\cos \beta}{\cos \alpha} + a $$

(note that a' is a function of ##\gamma##)
L&L does not write ##a'## but writes again ##a## (which is confusing). Now from this general solution he takes only the second addend as a particolar solution. then he takes the limit for ##\gamma \rightarrow \omega ##:
$$ \lim_{\gamma \rightarrow \omega} \frac{f}{m(\omega^2-\gamma^2)} [\cos (\gamma t +\beta)-\cos(\omega t+\beta)] = \frac{f}{2m\omega}t \sin(\omega t + \beta) $$

This is a special solution of ##\ddot{x}+\omega^2 x = f/m \cos(\omega t+\beta)## (in the limit ##\gamma \rightarrow \omega##). The general solution is the sum of a special solution plus the general solution of the homogeneus equation associated, which is just formula 22.5 :

$$x(t)= a \cos(\omega t+ \alpha) + \frac{f}{2m\omega}t \sin(\omega t + \beta) $$

remark: in this formula ##a## is the same as eq 22.4 (is a constant and is not ##a'##).

Hope someone will get benefit from this as i would have had yesterday ;)
 
Physics news on Phys.org
sorry my bad, at line "This is a special solution..." i meant ##\ddot x+ \omega ^2 x =f/m \cos(\gamma t+\beta)## instead of ##\ddot x+ \omega ^2 x =f/m \cos(\omega t+\beta)##.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top