- #71
printereater
- 94
- 13
In x-coordinate direction,
$$ T\sin(\beta )=\dot{m}v_{0}\sin(\theta))$$
$$\dot{m}=\frac{T\sin(\beta )}{v_{0}\sin(\theta)}\rightarrow (1)$$
In y-coordinate direction ,
$$T\cos(\beta )-W=-\dot{m}v_{0}\cos(\theta))-(-mv_{i})$$
$$T\cos(\beta )-W=\dot{m}(v_{i}-v_{0}\cos(\theta))$$
$$\dot{m}=\frac{T\cos(\beta )-W}{v_{i}-v_{0}\cos(\theta)}\rightarrow (2)$$
$$(1)=(2)$$
$$\therefore \frac{T\sin(\beta )}{v_{0}\sin(\theta)}=\frac{T\cos(\beta )-W}{v_{i}-v_{0}\cos(\theta)}$$
$$ T\sin(\beta )=\dot{m}v_{0}\sin(\theta))$$
$$\dot{m}=\frac{T\sin(\beta )}{v_{0}\sin(\theta)}\rightarrow (1)$$
In y-coordinate direction ,
$$T\cos(\beta )-W=-\dot{m}v_{0}\cos(\theta))-(-mv_{i})$$
$$T\cos(\beta )-W=\dot{m}(v_{i}-v_{0}\cos(\theta))$$
$$\dot{m}=\frac{T\cos(\beta )-W}{v_{i}-v_{0}\cos(\theta)}\rightarrow (2)$$
$$(1)=(2)$$
$$\therefore \frac{T\sin(\beta )}{v_{0}\sin(\theta)}=\frac{T\cos(\beta )-W}{v_{i}-v_{0}\cos(\theta)}$$