Fourier Transform of an exponential function with sine modulation

In summary, the conversation discusses the frequency domain spectrum of an exponential function modulated with a time-varying sine function. The code in MATLAB is used to generate the spectrum and the conversation also explores the possibility of finding an analytical expression for the spectrum using Bessel functions. The formula for the DFT in MATLAB is also discussed.
  • #1
tworitdash
108
26
I want to know the frequency domain spectrum of an exponential which is modulated with a sine function that is changing with time.

The time-domain form is,

[tex] s(t) = e^{j \frac{4\pi}{\lambda} \mu \frac{\sin(\Omega t)}{\Omega}} [/tex]

Here, [itex] \mu [/itex], [itex] \Omega [/itex] and [itex] \lambda [/itex] are constants.

A quick implementation in MATLAB gives me the following in the frequency/velocity domain.

Screen Shot 2021-06-28 at 10.06.56 AM.png


The code is given below.

DFT:
clear;
close all;lambda = 0.03;mu = 4 * 2/lambda; % Mean Doppler frequency
Omega_rpm = 60; % in RPM
Omega = 2*pi/60 * Omega_rpm; % In rad/s
BW_deg = 1.8; % beam width in degree
BW = BW_deg * pi/180; % beam width in radian

v_amb = 7.5;PRT = 1e-3;
f_amb = 1/(2 .* PRT);p0 = 0*pi/180; % start angle
p1 = 360*pi/180; % end angle

N_BW = 1;  % Number of beam widths to integrate

M = round((p1 - p0)/(BW * N_BW)); % Number of azimuth points
hs = N_BW * round(BW/Omega/PRT); % hits per scan -> Sweeps in one beamwidth

N = hs * M; % Total number of points in the time axis

th = linspace(p0, p1, N); % All the anglesphi = linspace(th(1), th(end), M); % Angle of the sectorst1 = 0:PRT:(N - 1)*PRT; % Time axis

ph_ = (2 * pi * mu .* t1);
s_ = (exp(1j .* ph_ .* (sin(eps + Omega .* t1)./(eps + Omega .* t1))));

vel_axis = linspace(-f_amb, f_amb, N); % frequency axis for the entire rotation

s_f = fftshift(fft(s_));
figure; plot(vel_axis*lambda/2, (abs(s_f)), 'LineWidth', 2); grid on;

xlabel('Doppler velocity [ms^{-1}]', 'FontSize', 12, 'FontWeight', 'bold');
ylabel('Spectrum', 'FontSize', 12, 'FontWeight', 'bold');
title('Spectrum function'); grid on;

I want to know what this function should look like in the spectrum domain analytically.
 
Physics news on Phys.org
  • #2
I haven't looked at your Matlab code, but the way to get an analytical expression is to use the generating function for Bessel functions
$$
e^{\frac{1}{2} z ( x - x^{-1})} = \sum_{n=-\infty}^\infty x^n J_n(z)
$$
set ##x=e^{j\Omega t}## and ##z = 4\pi\mu/\lambda\Omega## to get
$$
e^{j \frac{4\pi\mu}{\lambda\Omega} \sin(\Omega t)} = \sum_{n=-\infty}^\infty e^{j n\Omega t} J_n\left(\frac{4\pi\mu}{\lambda\Omega}\right)
$$
You can analytically work out the DFT of ##e^{j n \Omega t}## for your given sampling. I expect it will be some kind of geometric series.

jason
 
  • Like
Likes Twigg, tworitdash and Delta2
  • #3
Nice Bessel function property. However, when finding the DFT I see that it is not just a geometric progression, as ##n## appears in the Bessel function order. I am writing the steps here. Correct me if I am wrong.

$$
S(v) = \sum_{n=-\infty}^{+\infty} e^{jn\Omega t} J_{n}\Big(\frac{4\pi \mu}{\lambda \Omega}\Big) e^{-j \frac{4\pi}{\lambda} n v t}
$$

$$\implies$$

$$
S(v) = \sum_{n=-\infty}^{+\infty} e^{jnt(\Omega - \frac{4\pi\mu}{\lambda})} J_{n}\Big(\frac{4\pi\mu}{\lambda \Omega}\Big)
$$

My variable for DFT is ##v##.
 
Last edited:
  • #4
Or, am I stupid enough to not see something in the above formulation? :confused:
 
  • #5
The equation I gave is a continuous waveform. You first need to sample it at discrete times, then for each frequency component of the DFT you need to compute a sum. If the sample period is ##T## and we collect ##L## samples, then the ##\ell^{th}## sample of the discrete-time signal is
$$ X(\ell) = e^{j \frac{4\pi\mu}{\lambda\Omega} \sin(\Omega (\ell-1) T)} = \sum_{n=-\infty}^\infty e^{j n\Omega (\ell-1) T} J_n\left(\frac{4\pi\mu}{\lambda\Omega}\right)$$
where ##\ell## goes from ##1## to ##L##, just like Matlab vectors. This is the signal you are taking the FFT of.

I hope you know that the DFT (and hence the FFT) assumes that this signal consisting of ##L## samples is one period of a periodic signal. Assuming this is what you want, the DFT in Matlab is then defined as
$$Y(k) = \sum_{\ell=1}^L X(\ell) e^{-j\frac{2 \pi}{L}(\ell-1)(k-1) } $$
where ##k## goes from ##1## to ##L##. So the DFT is
$$Y(k) = \sum_{n=-\infty}^\infty J_n\left(\frac{4\pi\mu}{\lambda\Omega}\right) \sum_{\ell=1}^L e^{-j\frac{2 \pi}{L}(\ell-1)(k-1) } e^{j n\Omega (\ell-1) T} $$
The inner sum is a geometric series. Since ##J_n(z)## decreases fairly quickly once ##|n| > |z|## I expect this should be a practical formula.

jason
 
  • Like
Likes tworitdash
  • #6
jasonRF said:
The equation I gave is a continuous waveform. You first need to sample it at discrete times, then for each frequency component of the DFT you need to compute a sum. If the sample period is ##T## and we collect ##L## samples, then the ##\ell^{th}## sample of the discrete-time signal is
$$ X(\ell) = e^{j \frac{4\pi\mu}{\lambda\Omega} \sin(\Omega (\ell-1) T)} = \sum_{n=-\infty}^\infty e^{j n\Omega (\ell-1) T} J_n\left(\frac{4\pi\mu}{\lambda\Omega}\right)$$
where ##\ell## goes from ##1## to ##L##, just like Matlab vectors. This is the signal you are taking the FFT of.

I hope you know that the DFT (and hence the FFT) assumes that this signal consisting of ##L## samples is one period of a periodic signal. Assuming this is what you want, the DFT in Matlab is then defined as
$$Y(k) = \sum_{\ell=1}^L X(\ell) e^{-j\frac{2 \pi}{L}(\ell-1)(k-1) } $$
where ##k## goes from ##1## to ##L##. So the DFT is
$$Y(k) = \sum_{n=-\infty}^\infty J_n\left(\frac{4\pi\mu}{\lambda\Omega}\right) \sum_{\ell=1}^L e^{-j\frac{2 \pi}{L}(\ell-1)(k-1) } e^{j n\Omega (\ell-1) T} $$
The inner sum is a geometric series. Since ##J_n(z)## decreases fairly quickly once ##|n| > |z|## I expect this should be a practical formula.

jason
Wow! now it is clear for me. Sometimes I get confused even if I know how to proceed. Thanks a lot. I will try this soon.
 

FAQ: Fourier Transform of an exponential function with sine modulation

What is the Fourier Transform of an exponential function with sine modulation?

The Fourier Transform of an exponential function with sine modulation is a complex-valued function that represents the frequency components of the original signal. It can be used to analyze the signal in the frequency domain and can also be used to reconstruct the original signal from its frequency components.

How is the Fourier Transform of an exponential function with sine modulation calculated?

The Fourier Transform of an exponential function with sine modulation can be calculated using the Fourier transform formula, which involves integrating the original signal multiplied by a complex exponential function. This integral can be solved using techniques such as integration by parts or the Fourier transform table.

What is the significance of using an exponential function with sine modulation in the Fourier Transform?

An exponential function with sine modulation is commonly used in the Fourier Transform because it can represent a wide range of signals, including both periodic and non-periodic signals. This allows for a more versatile analysis of signals in the frequency domain.

How does the frequency of the sine modulation affect the Fourier Transform of the exponential function?

The frequency of the sine modulation affects the Fourier Transform by shifting the frequency components of the original signal. A higher frequency of the sine modulation will result in a wider spread of frequency components in the Fourier Transform, while a lower frequency will result in a more concentrated spread.

Can the Fourier Transform of an exponential function with sine modulation be used in practical applications?

Yes, the Fourier Transform of an exponential function with sine modulation has many practical applications, such as in signal processing, image and sound analysis, and data compression. It is a powerful tool for analyzing and manipulating signals in the frequency domain.

Similar threads

Replies
10
Views
2K
Replies
3
Views
933
Replies
3
Views
2K
Replies
47
Views
3K
Replies
8
Views
4K
Replies
1
Views
1K
Replies
3
Views
2K
Back
Top