Fourier Transform of Photon Emission Hamiltonian

In summary, the conversation discusses the process of obtaining the Fourier Transform of a Hamiltonian, specifically one involving the momentum and position operators. The individual's initial approach is questioned and they realize they may have made a mistake in their calculations. They are reminded to include all necessary factors and fully explain the steps in their mathematical approach. The importance of thoroughness and accuracy in physics is emphasized.
  • #1
thatboi
133
20
Hey all,
I just wanted to double check my logic behind getting the Fourier Transform of the following Hamiltonian:
$$H(x) = \frac{ie\hbar}{mc}A(x)\cdot\nabla_{x}$$
where $$A(x) = \sqrt{\frac{2\pi\hbar c^2}{\omega L^3}}\left(a_{p}\epsilon_{p} e^{i(p\cdot x)} + a_{p}^{\dagger}\epsilon_{p} e^{-i(p\cdot x)}\right)$$
and ##\epsilon_{p}## is the polarization vector and ##a_{p},a_{p}^{\dagger}## are the photon creation/annihilation operators for a photon with momentum ##p##. Also, we can treat the ##p## and ##x## as 4-vectors. To transform ##H(x)## to the momentum basis, I insert an integral of ##d^{4}x## and multiply by ##e^{ik\cdot x}##. Doing this leaves me with $$H(k) \propto \delta(p-k)k$$ since the ##\nabla_{x}## drags down a factor of ##k## and the Fourier Transform of an exponential function is just a Dirac delta. This result seems too simple to me so I was wondering if I made a mistake somewhere.
Thanks.
 
Physics news on Phys.org
  • #2
What happens to ##A(x)## when you do the integral? It seems like you're just leaving it out.
 
  • Like
Likes hutchphd
  • #3
PeterDonis said:
What happens to ##A(x)## when you do the integral? It seems like you're just leaving it out.
I thought the ##\delta(p-k)## factor came from the ##e^{(ip\cdot x)}## term in ##A(x)##, in which case I also forgot a ##\delta(p+k)*k## factor in my above response.
 
  • #4
Let me try to say what @PeterDonis said but slightly more direct. Where are ##a_p## and ##\epsilon_p##? Also, the expression you give for ##H(k)## is proportional to ##k##, and ##k## is generally a vector. Your sanity check alarms should be going off.
 
  • #5
Perhaps you should fill in the steps (using, say, mathematics

thatboi said:
A(x)=2πℏc2ωL3(apϵpei(p⋅x)+ap†ϵpe−i(p⋅x))
and ϵp is the polarization vector and ap,ap† are the photon creation/annihilation operators for a photon with momentum p. Also, we can treat the p and x as 4-vectors. To transform H(x) to the momentum basis, I insert an integral of d4x and multiply by eik⋅x. Doing this leaves me with

Hand waving is not enough. It is good that your radar went off. It is bad that you didn't do the physics.
 
Back
Top