Fourier transform of the ground state hydrogen wave function

AI Thread Summary
The discussion focuses on the Fourier transform of the ground state hydrogen wave function, detailing the mathematical steps from the initial equation to the final result. The transformation involves integrating over the angles and applying substitutions, particularly using the relationship between the dot product and cosine. A key point of confusion arises regarding the bounds of integration, with participants clarifying that integrating from 0 to π is standard due to the nature of the differential. The final integral results in a simplified expression for the Fourier transform, demonstrating the relationship between the sine function and the exponential function. Overall, the thread emphasizes understanding the mathematical transformations and integration techniques involved in this quantum mechanics problem.
Ado
Messages
26
Reaction score
4
Hi!

1. Homework Statement

From the website http://www1.uprh.edu/rbaretti/MomentumspaceIntegration8feb2010.htm
we can see the Fourier transform of the ground state hydrogenic wave function :

Φ(p) = ∫ ∫ ∫ exp(-i p r) (Z3/π )1/2 exp(-Zr) sin(θ) dθ dφ r² dr (1.1)

After intregation of the variable φ we have :

Φ(p) = 2π (Z3/π )1/2 ∫ ∫ { exp(-i pr cos(θ ) sin(θ) dθ } exp(-Zr) r² dr (1.2)

and next :

Φ(p) = 2π (Z3/π )1/2 ∫ { 2 sin(pr) /pr } exp(-Zr) r² dr (1.3)

= 4π (Z3/π )1/2 ∫ {sin(pr) /p} exp(-Zr) r dr

= 8 π1/2/ Z5/2 /( p² + Z² )²

And I want to understand these different steps..

Homework Equations



I don't understand the relations used between (1.1), (1.2) and (1.3) :
(1.1) to (1.2) new cos(θ ) appears
(1.2) to (1.3) sin(pr)/pr appears

The Attempt at a Solution



Can you explain me what happen between (1.1) and (1.3) ?

Tanks in advance !
 
Physics news on Phys.org
In 1.1 we have exp(-ip.r). p.r is the dot product of two vectors, whose value is pr*cosθ, where θ is the angle between the vectors. I suppose in p space, which I'm not familiar with, this angle must be equal to the coordinate θ. There is a bracket missing in 1.2, which should read
Φ(p) = 2π (Z3/π )1/2 ∫ ∫ { exp(-i pr cos(θ) ) sin(θ) dθ } exp(-Zr) r² dr (1.2)
This can be integrated over θ by using the substitution u = cosθ and the identity eix = cosx + i*sinx, to give 1.3
 
Thanks for your reply mjc123 !

I had applied your recommendation and I find the result in (1.3) :wink:

If I used the substitution u = cosθ, I must then integrate between 1 and -1 (cos(0) = 1 and cos(pi) = -1).

I put du = -sinθdθ, so :

exp(-i pr cos(θ) ) sin(θ) dθ = -exp(-i pr u) du = - cos(-pru)du + isin(pru)du

The complex term disappears with the integration and

1-1 - cos(-pru) du = 2sin(pr)/pr

I have just a question about the bounds of integration. At the beginning, we integrate between 0 and pi and with the substitution, between 1 and -1. The order of these bounds is important because if we integrate du between -1 and 1 we would have a negative term. My question is probably stupid but why are we constrained at the beginning to integrate between 0 and pi and not between pi and 0 ??

Thanks in advance !
 
A mathematician could no doubt give you a better formal explanation, but I would say basically: because the increment is dθ. You could also integrate from pi to 0 with increment -dθ.
If you think of it in terms of the area under a curve, for example, suppose you have a function y which is positive over the range x = 0 to 1, and you want the area under this curve, which of course is positive. This is ∫01ydx. We could also go from x = 1 to 0 in increments of -dx, and get ∫10y(-dx) = ∫10(-y)dx = ∫01ydx. Or think of the function y as the differential of the integral, i.e. the rate of change of the area with x. This is obviously positive (or negative if y is negative) with increasing x, i.e. positive dx. So we integrate y by dx over the interval 0 to 1, not 1 to 0. However, if we do a coordinate transformation, we must keep the initial and final limits in their transformed form, and transform dx correctly, so if we made the substitution u = e-x, we would integrate -y(u)/u*du from 1 to e-1.
Hope this is not too rubbish.
 
Thanks a lot for your explication mjc123 and thanks for your help!
 
Ado said:
Hi!

1. Homework Statement

From the website http://www1.uprh.edu/rbaretti/MomentumspaceIntegration8feb2010.htm
we can see the Fourier transform of the ground state hydrogenic wave function :

Φ(p) = ∫ ∫ ∫ exp(-i p r) (Z3/π )1/2 exp(-Zr) sin(θ) dθ dφ r² dr (1.1)

After intregation of the variable φ we have :

Φ(p) = 2π (Z3/π )1/2 ∫ ∫ { exp(-i pr cos(θ ) sin(θ) dθ } exp(-Zr) r² dr (1.2)

and next :

Φ(p) = 2π (Z3/π )1/2 ∫ { 2 sin(pr) /pr } exp(-Zr) r² dr (1.3)

= 4π (Z3/π )1/2 ∫ {sin(pr) /p} exp(-Zr) r dr

= 8 π1/2/ Z5/2 /( p² + Z² )²

And I want to understand these different steps..

Homework Equations



I don't understand the relations used between (1.1), (1.2) and (1.3) :
(1.1) to (1.2) new cos(θ ) appears
(1.2) to (1.3) sin(pr)/pr appears

The Attempt at a Solution



Can you explain me what happen between (1.1) and (1.3) ?

Tanks in advance !
How was the Sin integral calculated in the last step?
 
loued said:
How was the Sin integral calculated in the last step?
:welcome:

Note that this homework is from over four years ago. Hopefully Ado has graduated by now.
 
Or at least turned it in!
 
  • Haha
Likes PeroK
loued said:
How was the Sin integral calculated in the last step?
Use the fact that sin(pr) is the imaginary part of eipr.
 
  • #10
Or integrate by parts.
 
Back
Top