I Free Schroedinger equation: time separation

  • I
  • Thread starter Thread starter chartery
  • Start date Start date
chartery
Messages
42
Reaction score
5
Hi

Apologies for formatting, I can't get PF's new Tex to work for me.

The (?most) general solution of the free Schroedinger eq. is e^{±i(kx-ωt)} , which implies e^{+iωt} should solve the time separated ODE:
dψ/dt = -iωψ, but instead it satisfies dψ/dt = +iωψ which is not obviously (to me) the same equation. Could someone explain where my logic errs please?
 
Physics news on Phys.org
chartery said:
Hi

Apologies for formatting, I can't get PF's new Tex to work for me.

The (?most) general solution of the free Schroedinger eq. is e^{±i(kx-ωt)} , which implies e^{+iωt} should solve the time separated ODE:
dψ/dt = -iωψ, but instead it satisfies dψ/dt = +iωψ which is not obviously (to me) the same equation. Could someone explain where my logic errs please?
Because the energy ##E=\hbar \omega## is supposed to be positive, physically speaking (up to an additive constant).
Insert ##\psi (x,t)=e^{\pm i\omega t}\psi(x)## in Schrödinger's equation and see what happens.
 
  • Like
Likes javisot and PeroK
@pines-demon, thanks for reply. If I plug in e+iωt , I get separation constant as -ħω. Does that mean it is a "negative energy" solution?
 
  • Like
Likes pines-demon
chartery said:
If I plug in e+iωt , I get separation constant as -ħω. Does that mean it is a "negative energy" solution?
Note that the wave functions in the Schrödinger equation are complex functions.

##e^{-\mathrm{i}\omega t}## corresponds to the positive-energy solution.

##e^{+\mathrm{i}\omega t}=\left(e^{-\mathrm{i}\omega t}\right)^*## then corresponds to complex conjugate of the positive-energy solution.

For a free particle, both "##\pm##" solutions correspond to positive energies, its just that you use both the "normal" wave function ##\psi## and the complex-conjugated wave function ##\psi^*##.

This plays a role in quantum field theory, where ##\psi##'s correspond to wave functions of particles and ##\psi^*##'s - to wave functions of their anti-particles. Both the particle and its anti-particle are physical and have positive energies; the difference is that one of the wave functions is a complex-conjugated version.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top