Fundemental lemma of the calculus of variations

TooFastTim
Messages
12
Reaction score
0

Homework Statement



Hi, I've been revising the calculus of variations and using the wiki entry on the euler lagrange equation (http://en.wikipedia.org/wiki/Euler-Lagrange_equation) as a reference. Scroll down and you'll see: Derivation of one-dimensional Euler–Lagrange equation. Expand this. In it you'll see the statement: "It follows from the total derivative that" and:

dF/dε= dx/dε*∂F/∂x + dgε/dε*∂F/∂gε + dg'ε/dε*∂Fε/∂g'ε

Homework Equations



What happened to the first term (dx/dε*∂F/∂x)?

The Attempt at a Solution



I understand that the first term has gone to zero. But how? If π(a) and π(b) both = 0 surely f(x) is a line with f(x) = 0? In which case it is clear that that term will go to zero.
 
Physics news on Phys.org
Isn't ##dx/d\varepsilon =0##?
 
I think I have it. The description in wiki is a little limited (alternatively my imagination is limited :smile:) so by a little mixing and matching of proofs I think I have found it.

Thanks anyway.
 
I don't see any obvious problem with the derivation on Wikipedia other than it throws in the unnecessary term that seems to have confused you.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top