Galaxies as systems extended from the solar system

In summary, "Galaxies as systems extended from the solar system" explores the idea that galaxies can be viewed as vast systems encompassing not just stars and planets, but also the gravitational forces and cosmic interactions that connect them. It emphasizes the structural similarities between galaxies and the solar system, highlighting how both operate within the framework of gravitational dynamics and cosmic evolution. The discussion includes the formation, composition, and behavior of galaxies, illustrating their role as fundamental components of the universe that extend our understanding beyond individual solar systems.
  • #1
Martyn Arthur
118
20
TL;DR Summary
The application of Kepler's third law to galaxies
Is it a big assumption that Galaxies should follow Kepler's third law with rotation speeds decreasing with distance from the centre. Is the small tet of the behaviour of the Solar System not too small an example to make such a substantial assumption?
Thanks
Martyn
 
Astronomy news on Phys.org
  • #2
Martyn Arthur said:
Is it a big assumption that Galaxies should follow Kepler's third law
They don't follow Kepler's laws. Those only apply to two masses.

They are modelled as following Newton's laws (GR corrections are too small to worry about).
Martyn Arthur said:
Is the small tet of the behaviour of the Solar System not too small an example to make such a substantial assumption?
With the caveat that you mean Newton's laws not Kepler's the answer is:

1 - no, galactic behaviour is purely Newtonian, we just need to work out what dark matter is.

2 - sort of, we need to include general relativistic corrections to a Newtonian model.

3 - yes, all we need to do is work out how the modified theory, Modified Newtonian Dynamics (MOND), works.

Take your pick which is the correct one...
 
  • Like
Likes diogenesNY and russ_watters
  • #3
Thank you!
Martyn
 
  • #4
Ibix said:
They don't follow Kepler's laws. Those only apply to two masses.
Technically they apply to problems of central motion in a Kepler potential (proportional to 1/r). The second law applies more generally to any central potential as it is related to conservation of angular momentum. However, the first and third laws are contingent on the problem actually being a Kepler central potential.

The gravitational two-body problem of course reduces to a Kepler central potential problem once the center of mass motion is factored out.
 
Last edited:
  • Like
Likes Ibix
  • #5
Ibix said:
They don't follow Kepler's laws. Those only apply to two masses.

They are modelled as following Newton's laws (GR corrections are too small to worry about).

With the caveat that you mean Newton's laws not Kepler's the answer is:

1 - no, galactic behaviour is purely Newtonian, we just need to work out what dark matter is.

2 - sort of, we need to include general relativistic corrections to a Newtonian model.

3 - yes, all we need to do is work out how the modified theory, Modified Newtonian Dynamics (MOND), works.

Take your pick which is the correct one...
There is more than one modified theory. MOND is not the only game in town and is at best a "toy-model".
 

Similar threads

Replies
1
Views
1K
Replies
4
Views
2K
Replies
2
Views
777
Replies
6
Views
2K
Replies
4
Views
3K
Replies
7
Views
9K
Back
Top