Gauss's Law with NONuniform E field

AI Thread Summary
The discussion revolves around calculating the net electric flux leaving a closed surface in a nonuniform electric field described by E = (2.70 + 2.20 x^2)i N/C. The participants clarify that the flux through the sides of the surface is zero due to the angle between the electric field and the normal vector being 90 degrees. They focus on the flux contributions from the two ends of the surface, with calculations showing E values at specific points and using the area to determine the flux. The total flux is computed by adding the contributions from both ends, leading to a final value of 5.097. The conversation emphasizes the importance of correctly applying the dot product in flux calculations and understanding when integration is necessary.
Alex G
Messages
24
Reaction score
0

Homework Statement


A closed surface with dimensions a = b = 0.400 m and c = 0.800 m is located as shown in the figure below. The left edge of the closed surface is located at position x = a. The electric field throughout the region is nonuniform and given by E = (2.70 + 2.20 x2)i N/C, where x is in meters.
https://www.webassign.net/serpse8/24-p-061.gif

A)Calculate the net electric flux leaving the closed surface.

Homework Equations



For a closed surface Integral of E(dot)dA = qenclosed/Epsilon0

The Attempt at a Solution



Obviously I will have to integrate the Electric field here. I began with the simple formula
Int(E dot dA) from 1.2 to 0 because the distance at the edge where the E field leaves is 1.2m out. I believe since the sides are all parallel to the E field those become 0.
So I tried integrating
2.70 + 2.20x^2 dA from 1.2 to 0
I believe dA is x^2 (a=b=x) and dA is the combined infinitesimal areas to produce LxW of the end of the box.
The angle between the exiting E field and the Normal to the plane at the end of the box are parallel thus negligible.
What's going wrong here :-/
 
Physics news on Phys.org
I do not quite follow you but you might not know that dA in the dot product E˙dA is a vector, normal to the surface and pointing outward from the slab. This dot product is equal to E*cos(φ)*dA where φ is the angle enclosed by E and dA and E and dA are the magnitudes of these vectors. At the sides of the slab, the normals of the surfaces are perpendicular to E so cos(φ)=0, the dot products cancel. At the bases, the planes located at x=0.4 and x=1.2, dA is parallel to the x axis. Its direction is opposite to E at x=a (φ=180°) and it points in the same direction as E at x=1.2 (φ=0). The magnitude of dA is dydz on these planes.


ehild
 
This might be a bit simplistic but at x=.4 E=3.02 and area=.16 or Flux=E*A*Cos(180)

at x=1.2 E=5.58 and area=.16 or flux=E*A*cos(0)

No flux through side surfaces just ends. Add the two fluxes to get total flux.

I get a total flux of 5.097
 
RTW69 said:
This might be a bit simplistic but at x=.4 E=3.02 and area=.16 or Flux=E*A*Cos(180)

at x=1.2 E=5.58 and area=.16 or flux=E*A*cos(0)

No flux through side surfaces just ends. Add the two fluxes to get total flux.

I get a total flux of 5.097

The procedure is OK, but check your E values.

At x=0, E=2.7+2.2*0.16=3.052
At x=1.2, E=2.7+2.2*1.44=5.868

ehild
 
X=.4; E=2.7+2.2*0.16=3.052, Area=.16; E=3.052*.16*Cos(180)=-.488 thanks for catching my mistake!
 
Wow thank you both, that was a lot easier than I thought. I suppose I'm just uncertain when I should integrate and when I shouldn't.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top