MHB General motion in a straight line.

AI Thread Summary
The discussion revolves around calculating the motion of a bird returning to point A after traveling to point B. The user determined the time T as approximately 4.25 seconds using the integral of a velocity function, which resulted in a zero net displacement. The graph of velocity versus time shows that the areas above and below the x-axis cancel each other out, confirming the return to the starting point. The method involved solving a cubic equation derived from the integrated velocity function. Overall, the calculations and graphical analysis support the conclusion that the bird returns to point A.
Shah 72
MHB
Messages
274
Reaction score
0
20210609_222002.jpg

In q(c) I calculated the distance using t= 4.25 S . I get S=-3.23×10^-3
I added 5.78m to this which is the distance between A and B, I get 5.78m. Is this the correct method to prove that the bird returns to A. Pls help
 
Mathematics news on Phys.org
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

zero_Disp.png
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Thanks so much!
 
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can I pls ask you
skeeter said:
$\displaystyle \dfrac{1}{12}\int_0^T 3t^3-16t^2-10t+60 \, dt = 0$

$T = \dfrac{\sqrt{1105}+5}{9} \approx 4.25$

in the attached graph of velocity vs time ...

shaded area above the x-axis = displacement from A to B

shaded area below the x-axis = displacement from B to A

the two shaded areas sum to zero, indicating a return to the starting point, A

https://www.physicsforums.com/attachments/11188
Can you pls tell me how did you calculate that? Did you solve the cubic equation? I don't understand how you got the equation sq root (1105).
 
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
 
skeeter said:
I integrated the velocity function and evaluated it from 0 to T and set the result equal to zero.

$\dfrac{T}{12}\left(\dfrac{3T^3}{4} - \dfrac{16T^2}{3} - 5T+ 60\right) = 0$

ignored the T/12 factor & multiplied the terms inside the parentheses by 12 to clear the fractions …

$9T^3 - 64T^2 -60T+720 = 0$

I graphed the cubic on my calculator and found T = 6 was a zero, then used synthetic division to find the quadratic factor …

$(T-6)(9T^2-10T-120) = 0$

$T = \dfrac{10 \pm \sqrt{4420}}{18}$

discarding the negative value for T …

$T = \dfrac{10+2\sqrt{1105}}{18} = \dfrac{5+\sqrt{1105}}{9}$
Thank you so much!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
4
Views
2K
Replies
2
Views
2K
Replies
6
Views
1K
Replies
4
Views
784
Replies
2
Views
986
Replies
20
Views
1K
Replies
7
Views
930
Replies
4
Views
996
Replies
4
Views
1K
Back
Top