I Generators of translations

redtree
Messages
335
Reaction score
15
TL;DR Summary
The relationship between the generators of translation and the representation of the Poincare group
I just want to make sure I understand this correctly.

For an infinite-dimensional representation, the generators of translation can be written as ##i \frac{\partial}{\partial_{\mu}}= i \partial_{\mu}##, where the generators of the Lorentz group can be written as ##i (x^{\mu}\partial_{\nu} - x^{\nu}\partial_{\mu})##.

However, for a finite-dimensional case, where the generators of the Lorentz group are formulated as boost and rotation matrices, the generators of translation can be written as matrices with elements ##i \delta x## in the appropriate row/column locations, where ##\delta x## denotes an infinitesimal translation in some basis of ##x##.

In other words, in finite-dimensional representation, the generators of translation are infinitesimal displacements (instead of partial derivates as in the infinite-dimensional representation).
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top