Geometry: prove that point M is touched by 4 circles

In summary, the conversation discusses the equation for a circle touching three points and the system of equations for four circles. The design of the proof is shown, but the speaker has not tried it yet due to a potentially difficult matrix calculation. The conversation also mentions a link for additional information. The final part of the conversation discusses parameters and equations for four specific circles. The speaker provides equations for the circles and their determinants, and concludes with a note about making careless mistakes.
  • #1
Jiketz
2
0
Homework Statement
This is the problem: Given are two parallelograms ABCD and AECF with common diagonal
diagonal AC, where E and F lie inside the parallelogram ABCD.
Show:
The circumcircles of the triangles AEB, BFC, CED and DFA have a point
in common.
I've already given an answer in the pdf, but how can I prove that the point M is also on the remaining two circles? Here is another sketch I drew. Can you please finish the pdf paper ?
Relevant Equations
relevant equations can be found in the pdf solution from me
qukv4djahqia1.jpeg
 

Attachments

  • P1.pdf
    60.8 KB · Views: 140
Physics news on Phys.org
  • #2
Interesting exercise. I take Cartesian coordinates to look at as attached figure.
We can write the equation of circle touching three points as
[tex]x^2+y^2+lx+my+n=0[/tex]
Giving three (x,y)s of touching points, we get a set (l,m,n) . We get four (l,m,n) sets for the four circles. The system of four equations of the circles would show one degenerate solution.
That's the design of the proof, though I have not tired yet due to an expected terrible matrix calculation. The symmetry should make it easy.
1677040313458.png
 
Last edited:
  • Like
Likes Lnewqban
  • #4
Contd. from my previous post
anuttarasammyak said:
The system of four equations of the circles would show one degenerate solution.
The equation of line which connects two commom points of the cirlces i and j, is
[tex](l_i-l_j)x+(m_i-m_j)y+n_i-n_j=0[/tex]
The system of such six lines meet at a point (x,y) are recuced to three equations.
[tex]
\begin{pmatrix}
l_1-l_2 & m_1-m_2 & n_1-n_2 \\
l_2-l_3 & m_2-m_3 & n_2-n_3 \\
l_3-l_4 & m_3-m_4 & n_3-n_4 \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
1 \\
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0 \\
\end{pmatrix}
[/tex]
This 3X3 matrix in LHS shoud have determinant zero so that there is a solution.
[tex]
\begin{vmatrix}
l_1-l_2 & m_1-m_2 & n_1-n_2 \\
l_2-l_3 & m_2-m_3 & n_2-n_3 \\
l_3-l_4 & m_3-m_4 & n_3-n_4 \\
\end{vmatrix}
=\sum_{i,j,k,q=1}^4 P(ijkq)l_i m_j n_k
[/tex]
where P(ijkq)=0 when any of them equals.
P(ijkq)=1 when ijkq is even pertumation of 1234.
P(ijkq)=-1 when ijkq is odd permutation of 1234.

We expect to get coordinates of M as
[tex]
\begin{pmatrix}
l_1-l_4 & m_1-m_4 & n_1-n_4 \\
l_2-l_4 & m_2-m_4 & n_2-n_4 \\
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
1 \\
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
\end{pmatrix}
[/tex]
or
[tex]
\begin{pmatrix}
x \\
y \\
\end{pmatrix}
=\frac{-1}{(l_1-l_4 )(m_2-m_4 )-(l_2-l_4 )(m_1-m_4 )}
\begin{pmatrix}
m_2-m_4 & m_4-m_1 \\
l_4-l_2 & l_1-l_4 \\
\end{pmatrix}
\begin{pmatrix}
n_1-n_4 \\
n_2-n_4 \\
\end{pmatrix}
[/tex]
 
Last edited:
  • #5
Supplement to my post #2

Say three points ##(a_1,a_2),(b_1,b_2),(c_1,c_2)## is on the circle which is caratterized by (l,m, n)
[tex]
\begin{pmatrix}
a_1& a_2 & 1 \\
b_1& b_2 & 1 \\
c_1& c_2 & 1 \\
\end{pmatrix}
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=-
\begin{pmatrix}
a_1^2+a_2^2 \\
b_1^2+b_2^2 \\
c_1^2+c_2^2 \\
\end{pmatrix}
[/tex]
Solving it for l,m,n
[tex]
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=\frac{-1}{det}
\begin{pmatrix}
b_2-c_2 & c_2-a_2 & a_2-b_2  \\
c_1-b_1 & a_1-c_1 & b_1-a_1 \\
b_1c_2-b_2c_1  & c_1a_2-c_2a_1 & a_1b_2-a_2b_1 \\
\end{pmatrix}
\begin{pmatrix}
a_1^2+a_2^2 \\
b_1^2+b_2^2 \\
c_1^2+c_2^2 \\
\end{pmatrix}
[/tex]
where
[tex]det=a_1b_2-a_2b_1+b_1c_2-b_2c_1+c_1a_2-c_2a_1[/tex]

Parameters in this exercise are
[tex]
\begin{matrix}
& CircleDAF & CircleDCE & CircleBCF & CircleBAE \\
a_1 & d_1 & d_1 & -d_1 & -d_1 \\
a_2 & d_2 & d_2 & -d_2 & -d_2 \\
b_1 & f_1 & -f_1 & f_1 & -f_1 \\
b_2 & f_2 & -f_2 & f_2 & -f_2 \\c_1 & -1 & 1 & 1 & -1 \\
c_2 & 0 & 0 & 0 & 0 \\
det & -d_2+f_2+d_1f_2-d_2f_1 & d_2+f_2-d_1f_2+d_2f_1 & -d_2-f_2-d_1f_2+d_2f_1 & d_2-f_2+d_1f_2-d_2f_1
\end{matrix}[/tex]
As for circle DAF
[tex]
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=\frac{-1}{det}
\begin{pmatrix}
f_2 & -d_2 & d_2-f_2 \\
-1-f_1 & d_1+1 & -d_1+f_1 \\
f_2& -d_2 & d_1f_2-d_2f_1 \\
\end{pmatrix}
\begin{pmatrix}
d_1^2+d_2^2 \\
f_1^2+f_2^2 \\
1 \\
\end{pmatrix}
[/tex]
[tex]
=\frac{-1}{det}
\begin{pmatrix}
f_2 |d|^2 -d_2 |f|^2 +d_2-f_2 \\
(-1-f_1 )|d|^2+ (d_1+1 )|f|^2 -d_1+f_1 \\
f_2|d|^2 -d_2|f|^2+d_1f_2-d_2f_1 \\
\end{pmatrix}
[/tex]
where
[tex]|d|^2=d_1^2+d_2^2[/tex]
[tex]|f|^2=f_1^2+f_2^2[/tex]
[tex]det=-d_2+f_2+d_1f_2-d_2f_1[/tex]

As for circle DCE
[tex]
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=\frac{-1}{det}
\begin{pmatrix}
-f_2 & -d_2 & d_2+f_2 \\
1+f_1 & d_1-1 & -d_1-f_1\\
f_2 & d_2 & -d_1f_2+d_2f_1 \\
\end{pmatrix}
\begin{pmatrix}
d_1^2+d_2^2 \\
f_1^2+f_2^2 \\
1 \\
\end{pmatrix}
[/tex]
[tex]=\frac{-1}{det}
\begin{pmatrix}
-f_2 |d|^2 -d_2 |f|^2+ d_2+f_2 \\
(1+f_1) |d|^2+ (d_1-1 )|f|^2 -d_1-f_1\\
f_2 |d|^2+ d_2|f|^2 -d_1f_2+d_2f_1 \\
\end{pmatrix}
[/tex]
where
[tex]det=d_2+f_2-d_1f_2+d_2f_1[/tex]

As for circle BCF
[tex]
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=\frac{-1}{det}
\begin{pmatrix}
f_2 & d_2& -d_2-f_2\\
1-f_1 & -1-d_1 & d_1+f_1\\
-f_2 & -d_2 & -d_1f_2+d_2f_1 \\
\end{pmatrix}
\begin{pmatrix}
d_1^2+d_2^2 \\
f_1^2+f_2^2 \\
1 \\
\end{pmatrix}
[/tex]
[tex]
=\frac{-1}{det}
\begin{pmatrix}
f_2 |d|^2+ d_2|f|^2 -d_2-f_2\\
(1-f_1)|d|^2 +( -1-d_1) |f|^2+ d_1+f_1\\
-f_2 |d|^2 -d_2 |f|^2 -d_1f_2+d_2f_1 \\
\end{pmatrix}
[/tex]
where
[tex]det=-d_2-f_2-d_1f_2+d_2f_1[/tex]
for circle BAE

[tex]
\begin{pmatrix}
l \\
m \\
n \\
\end{pmatrix}
=\frac{-1}{det}
\begin{pmatrix}
-f_2 & d_2 & -d_2+f_2 \\
-1+f_1 & -d_1+1 & d_1-f_1 \\
-f_2 & d_2 & d_1f_2-d_2f_1 \\
\end{pmatrix}
\begin{pmatrix}
d_1^2+d_2^2 \\
f_1^2+f_2^2 \\
1 \\
\end{pmatrix}
[/tex]
[tex]
=\frac{-1}{det}
\begin{pmatrix}
-f_2 |d|^2+ d_2 |f|^2 -d_2+f_2 \\
(-1+f_1)|d|^2+ (-d_1+1 )|f|^2+ d_1-f_1 \\
-f_2 |d|^2+ d_2 |f|^2+ d_1f_2-d_2f_1 \\
\end{pmatrix}
[/tex]
where
[tex]det=d_2-f_2+d_1f_2-d_2f_1[/tex]
I hope I have not made careless mistake.
 
Last edited:

FAQ: Geometry: prove that point M is touched by 4 circles

What does it mean for point M to be "touched" by 4 circles?

In geometry, for point M to be "touched" by 4 circles means that point M is a common point of tangency for all four circles. This implies that each of the four circles is tangent to point M, and M lies on the circumference of each circle.

What are the necessary conditions for 4 circles to be tangent to a single point M?

The necessary conditions for 4 circles to be tangent to a single point M include: the circles must be arranged such that their tangents at point M intersect at that point, and the radii of the circles at point M must be collinear. Additionally, the distances between the centers of the circles and point M must be equal to their respective radii.

How can you prove that point M is touched by 4 circles geometrically?

To prove geometrically that point M is touched by 4 circles, you can use coordinate geometry or classical Euclidean geometry. One approach involves placing point M at a strategic location, using the circle equations, and showing that the tangency condition (distance from the circle's center to point M equals the radius) holds true for all four circles. Another approach is to use geometric constructions and properties of tangents and circles to demonstrate that all four circles intersect at point M.

What role do the radii of the circles play in the proof?

The radii of the circles play a crucial role in the proof because they determine the distance from each circle's center to the point of tangency, which is point M. The radii must be such that when extended to point M, they are equal to the distance from the circle's center to point M. This ensures that each circle is tangent to point M, satisfying the tangency condition.

Can this geometric configuration of 4 circles tangent to a single point be generalized?

Yes, this geometric configuration can be generalized. The concept of multiple circles being tangent to a single point can be extended to more than four circles, provided the tangency conditions and geometric constraints are met. The principles of tangency, circle properties, and the arrangement of circles can be applied to create similar configurations with more circles or even in higher dimensions.

Back
Top