- #1
jaydnul
- 558
- 15
Hi!
I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.
What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.
But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers). Is there any other explaination for the transistion we make Acosx <==> Ae^(jx) and why we can do that?
I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.
What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.
But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers). Is there any other explaination for the transistion we make Acosx <==> Ae^(jx) and why we can do that?