B Getting from complex domain to real domain

  • B
  • Thread starter Thread starter jaydnul
  • Start date Start date
  • Tags Tags
    Complex numbers
AI Thread Summary
The discussion focuses on the transition between the expressions Acosx and Ae^(jx), highlighting the discomfort with taking the real part of complex numbers as a mathematical operation. While Euler's formula is understood, the leap to using the real part raises questions about its normalcy in mathematical practice. The explanation provided emphasizes that taking the real part is standard in linear algebra, as it relates to the independence of vectors in complex space. The conversation also touches on the historical context of these operations, asserting that they are now accepted as standard mathematics. Understanding this transition is essential for grasping the relationship between complex and real numbers.
jaydnul
Messages
558
Reaction score
15
Hi!

I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.

What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.

But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers). Is there any other explaination for the transistion we make Acosx <==> Ae^(jx) and why we can do that?
 
Mathematics news on Phys.org
jaydnul said:
Hi!

I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.

What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.

But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers). Is there any other explaination for the transistion we make Acosx <==> Ae^(jx) and why we can do that?
It is linear algebra. The vectors ##\vec{1}## and ##\vec{\mathrm{i}}## are linear independent over the real numbers. That means that any real expression
$$
\alpha \vec{1} + \beta \vec{\mathrm{i}} = \alpha' \vec{1} +\beta' \vec{\mathrm{i}}
$$
implies
$$
(\alpha-\alpha')\cdot \vec{1} + (\beta-\beta')\cdot \vec{\mathrm{i}}=\vec{0}
$$
and therefore ##\alpha=\alpha' ## and ##\beta=\beta'## by linear independence.
 
Another picture of looking at the complex numbers is ##\mathbb{C}=\mathbb{R}[T]/\langle T^2-1 \rangle## which is a quotient ring of the polynomials over the real numbers in one variable ##T.## A complex number is thus a polynomial ##\alpha+\beta\cdot \vec{\mathrm{i}} =\alpha +\beta \cdot T## where we identify ##T^2## with ##-1.## Since ##0 \neq T \neq 1,## we can conclude from ##\alpha+\beta\cdot \vec{\mathrm{i}}=\alpha+\beta\cdot T=0## that ##\alpha = \beta=0.##
 
jaydnul said:
Hi!

I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.
Good. That is the hard part.
jaydnul said:
What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.

But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers).
It is very normal. If you have a point in two dimensional space, ##(x,y) \in \mathbb{R}## X ##\mathbb{R}## ,it is completely normal to look at its ##x## value. So looking at the real part of ##Ae^{(jx)} = (A\cos(x), A\sin(x))## is normal.
(The question of how and why it was invented is a historical question. It is now standard mathematics, which is all that matters for this discussion.)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top