MHB Given a,b∈T, a^2−ab+b^2 divides a^2b^2, Prove that T is finite

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Finite
AI Thread Summary
The discussion centers on proving that the set T of natural numbers, where for any a, b in T, the expression a^2 - ab + b^2 divides a^2b^2, is finite. It is established that a and b must be coprime or one of them must equal 1; otherwise, if (a, b) is a solution, then (na, nb) for any integer n would also be a solution, leading to an infinite set. The proof hinges on the divisibility condition and the properties of coprime numbers. The conclusion drawn is that the conditions imposed on a and b restrict the size of T, confirming its finiteness. Thus, T cannot contain infinitely many elements.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $T$ be a set of natural numbers such that for any $a, b \in T$, $a^2 − ab + b^2$ divides $a^2b^2$.

Prove, that $T$ is finite.
 
Mathematics news on Phys.org
lfdahl said:
Let $T$ be a set of natural numbers such that for any $a, b \in T$, $a^2 − ab + b^2$ divides $a^2b^2$.

Prove, that $T$ is finite.

For the above to be valid a and b should be co-prime or one of them 1 else if (a,b) is a solution then (na,nb) is also a sloution for integer N
 
Hi, kaliprasad!
In order to answer your comment, I´ll suppose, that $a,b \in T$ and $a$ and $b$ are not coprimes.

Let $d = gcd(a,b)$. Then we have:

$a = da_1$ and $b = db_1$, where $a_1$ and $b_1$ are coprimes.

Then: $a_1^2-a_1b_1+b_1^2$ divides $d^2a_1^2b_1^2$, but $gcd(a_1^2-a_1b_1+b_1^2,a_1b_1) = 1$. Hence, $a_1^2-a_1b_1+b_1^2$ divides $d^2$, i.e. $a^2-ab+b^2$ divides $d^4$.

Since $d \leq a$, we have $a^2-ab+b^2 \leq a^4$. If you fix any $a \in T$, $b$ can only take on a finite number of distinct values.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top