A Going from Cauchy Stress Tensor to GR's Energy Momentum Tensor

Luai
Messages
1
Reaction score
0
TL;DR Summary
Is there a mathematical operation that transforms the Cauchy Stress Tensor to the Energy Momentum Tensor? If the former lives in 3D and latter lives in 4D, how come they have the same units?
  1. Why do the Cauchy Stress Tensor & the Energy Momentum Tensor have the same SI units? Shouldn't adding time as a dimension changes the Energy Momentum Tensor's units?
  2. Did Einstein start with the Cauchy Tensor when he started working on the right hand side of the field equations of GR?
  3. If so, What tensor operation(s) would transform the 3D Cauchy Tensor into the 4D Energy Momentum Tensor of GR?
 
Last edited by a moderator:
Physics news on Phys.org
@Luai I have edited your post to remove the bold. There is no need to put an entire post in bold.
 
  • Like
Likes topsquark, Vanadium 50 and Luai
Luai said:
Is there a mathematical operation that transforms the Cauchy Stress Tensor to the Energy Momentum Tensor?
No. They are two different tensors.

Luai said:
If the former lives in 3D and latter lives in 4D, how come they have the same units?
The units of stress are the same as the units of energy density. Stress is force per unit area. Energy density is energy per unit volume, i.e., (force x distance) / (area x distance), i.e., the same as force per unit area.

Luai said:
Shouldn't adding time as a dimension changes the Energy Momentum Tensor's units?
No. Why would it?

Luai said:
Did Einstein start with the Cauchy Tensor when he started working on the right hand side of the field equations of GR?
No.
 
  • Like
Likes topsquark and Luai
In relativistic physics, the "Cauchy stress tensor" form the space-space components of the energy-momentum tensor. The time-time component is the energy density and the time-space components are the momentum density (times ##c##).

The interesting thing with GR is that when you take the "mechanical energy momentum tensor" (ideal/viscous fluids, elastic bodies,...) on the right-hand side if you have a solution of the Einstein equations, due to the Bianchi identities the equations of motion for the matter, which is given by ##\vec{\nabla}_{\mu} T^{\mu \nu}=0## is automatically fulfilled, i.e., you can get a fully consistent solution of the Einstein equations only if you simultaneously solve the mechanics equations of motion for the matter.

A very nice treatment of all this can be found in

D. E. Soper, Classical Field Theory
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top