- #1
Phyrrus
- 21
- 0
Homework Statement
r=xi+yj+zk and r =[itex]\sqrt{x^2 + y^2 + z^2}[/itex] Let f(r) be a C2 scalar function
Prove that [itex]\nabla[/itex]f = [itex]\frac{1}{2}[/itex][itex]\frac{df}{dr}[/itex]r
Homework Equations
Vector identities?
The Attempt at a Solution
[itex]\nabla[/itex]f = ([itex]\frac{df}{dx}[/itex] , [itex]\frac{df}{dy}[/itex] , [itex]\frac{df}{dz}[/itex])
= df/dr]?
= [itex]\frac{df}{dr}[/itex][itex]\hat{r}[/itex] (unit vector of r)
= [itex]\frac{df}{dr}[/itex]r[itex]\frac{1}{r}[/itex]?
I'm pretty sure what I've attempted isn't mathematically correct in the slightest, though in my head it seems to make some geometric sense. Am I even close though?
Last edited: