I Gradient Energy: Definition & Classical Mechanics

  • I
  • Thread starter Thread starter Haorong Wu
  • Start date Start date
  • Tags Tags
    Energy Gradient
Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
Gradient energy is given by ##\frac 1 2 (\nabla \phi)^2##. What does it represent?
In page 40 of Spacetime and geometry by Sean M. Carroll, when consider the classical mechanics of a single real scalar field, it reads that the field will have an energy density including various contributions:
kinetic energy:##\frac 1 2 \dot \phi^2##
gradient energy:##\frac 1 2 (\nabla \phi)^2##
potential energy:##V(\phi)##

I am not familiar with gradient energy. I googled it, but it returns with energy gradient, which I do not think is the same thing.

Also, is this gradient energy introduced because it and kinetic energy can combine into a covariant form?

Thanks!
 
Physics news on Phys.org
It's the energy cost due to spatial variation of the field phi. It's just nomenclature.
 
haushofer said:
It's the energy cost due to spatial variation of the field phi. It's just nomenclature.
Thanks. Is there any simple example that could help me memorize it?

I am thiking about electric field. Could I say the field vary from point to point, so the energy associated with one point is different from another one. The difference between two very close points will be something like gradient energy?
 
Haorong Wu said:
Thanks. Is there any simple example that could help me memorize it?

I am thiking about electric field. Could I say the field vary from point to point, so the energy associated with one point is different from another one. The difference between two very close points will be something like gradient energy?
Yes, as long as you don't confuse the electric field for a scalar field ;)
 
Hi, @haushofer . I am a little confused now. Could a scalar field not represent an electric field? I thought this was valid because in some papers, I read that the scalar field is used to study the transpotation of light. For example, in https://arxiv.org/abs/2009.04217 , the paragraph before Eq. (2).
 
Maybe in some effective treatment I'm not familiar with, but a general time dependent electric field cannot be written with just a scalar field.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top