- #1
mfurqan
- 1
- 0
suppose g(r) is a scalar function which is constant inside the volume 'v' but discontinuous at the boundaries of 'v'. The magnitude of discontinuity is given by constant 'M' then can we write the following expression
[itex]\int\nabla[/itex]g(r)dv=M[itex]\int\hat{n}\delta[/itex](r-rs)dv=M[itex]\hat{n}\int[/itex]d[itex]\delta[/itex]v
where [itex]\delta[/itex]v is the boundary of volume 'v'
rs[itex]\in\delta[/itex]v
[itex]\hat{n}[/itex] is the outward normal
[itex]\int\nabla[/itex]g(r)dv=M[itex]\int\hat{n}\delta[/itex](r-rs)dv=M[itex]\hat{n}\int[/itex]d[itex]\delta[/itex]v
where [itex]\delta[/itex]v is the boundary of volume 'v'
rs[itex]\in\delta[/itex]v
[itex]\hat{n}[/itex] is the outward normal