B Gravitational Potential Energy & Mass Change: Andrew's Question

andrew s 1905
Messages
238
Reaction score
95
TL;DR Summary
Does the work done in separating two masses increase their mass in accordance with e=mc^2
If I start with two, otherwise isolated, masses M and m initially together and do work to separate them then the work done, I assume, goes into the gravitational binding energy between them. Will the system of mass M and m have increased in mass due to this in accordance with e=mc^2?

I believe yes as it is broadly analogous to chemical or nuclear binding.

If I am wrong please provide some pointers in the right direction.

Thanks Andrew
PS this is not a homework question I am 70 and not formally studying it's for personal interest.
 
Physics news on Phys.org
I think for this question to make sense you need to be far enough away from the masses for them to be treated as a single point mass at all times. Otherwise you can't really characterise the gravitational field in terms of "the mass", since it depends on the mass distribution even in Newtonian gravity.

But then you run into the problem of where the energy came from to move the masses apart. Was it already there, e.g. in the form of rocket fuel? Or was it supplied from outside, e.g. by shining a laser on to a solar sail on one of the masses? In the first case I would not expect the overall mass to change because no energy was added to the system, but in the second I would expect it to change because energy was supplied.
 
Thanks, it was intended to be very simplified and I did intend the energy to be supplied from outside the system. Regards Andrew
 
Last edited:
andrew s 1905 said:
Will the system of mass M and m have increased in mass due to this in accordance with e=mc^2?
Assuming we are working with point masses, the mass of the system is greater than ##M+m## and it increased by an amount ##W/c^2##, where ##W## is the work you did separating them.
 
Mister T said:
Assuming we are working with point masses, the mass of the system is greater than ##M+m## and it increased by an amount ##W/c^2##, where ##W## is the work you did separating them.
If we are treating gravitational potential energy has having a mass equivalent then...

The mass of a gravitationally bound system will be less than the sum ##M+m##. But after being separated by the applied work, the energy deficit ("binding energy") is reduced by an increment of ##W/c^2##.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top