I Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)

AI Thread Summary
The discussion focuses on understanding Example 4.8 from Griffith's Electrodynamics, particularly the calculations involving a point charge above a dielectric plane. Key points include the use of the method of images to simplify the electric field calculations and the derivation of potential equations for regions above and below the plane. Questions arise about the validity of these equations in satisfying Poisson's equation and the boundary conditions at the dielectric interface. The force on the point charge is derived, prompting inquiries about the underlying calculations and assumptions. Clarifications are sought on specific equations and the reasoning behind Griffith's arguments in the final solution.
Plantation
Messages
19
Reaction score
1
TL;DR Summary
Griffith, Electrodynamics, understanding Example 4.8.
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now.

> Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin.

전자기학 질문.webp


In the page 196, in the first paragraph, the author argues as follows :

We could, of course, obtain the field of ##\sigma_b## by direct integration

$$ \mathbf{E} = \frac{1}{4 \pi \epsilon_0} \int ( \frac{\hat{\mathfrak{r}}}{\mathfrak{r}^2}) \sigma_b da$$ ( where ##\mathfrak{r}## is the separation vector. I still don't know how to write cursive ##r## in physics Forum ).
But, as in the case of the conducting plane, there is a nicer solution by the method of images.
Indeed, if we replace the dielectric by a single point charge ##q_b## at the position ##(0,0, -d)##, we have

$$ V = \frac{1}{4 \pi \epsilon_0}[ \frac{q}{\sqrt{x^2 +y^2 + (z-d)^2 }} + \frac{q_b}{\sqrt{x^2+ y^2+(z+d)^2}}]. \tag{4.52}$$

in the region ##z>0##. Meanwhile, a charge ##(q+q_b)## at ##(0,0.d)## yields the potential
$$ V= \frac{1}{4\pi \epsilon_0} [ \frac{q + q_b}{\sqrt{x^2+y^2+(z-d)^2}}] . \tag{4.53}$$

for the region ##z<0##.

Q.1. Why ##(4.52)## holds for region ##z>0## ? And why we consider a charge ##(q+q_b)## at ##(0,0,d)## and why the potential ##(4.53)## it yelds holds for the region ##z<0## ?
I've only skimmed this issue roughly, but I don't understand it correctly.


(Continuing arguemnt ) Taken together, Eqs. 4.52 and 4.53 constitute a function that satisfies Poisson' equation with a point charge ##q## at ##(0,0,d)## ( what exact form of equation is it? ), which goes to zero at infinity, which is continuous at the boundary ##z=0##, and whose normal derivative exhibits the discontinuity appropriate to a surface charge ##\sigma_b## at ##z=0## :

$$-\epsilon_0 (\frac{\partial V}{\partial z}|_{z=0^{+}}- \frac{\partial V}{\partial z}|_{z=0^{-}} ) = -\frac{1}{2 \pi}( \frac{\chi_e}{\chi_e +2}) \frac{qd}{(x^2+y^2+d^2)^{3/2}}. \tag{1}$$

Q.2. Can we really show that the ##(4.52)## and ##(4.53)## together satisfies the Poisson's equation? Is ##(1)## the result of a direct calculation obtained by substituting ##(4.52)## and ##(4.53)## ( and using ##(4.51)## in his book ) ? Why such result ##(1)## guarantees the associated boundary condition? Finally, how can we know that the boundary conditions Griffith arranges- goes to zero at infinity, continuous at the boundary ##z=0##, normal derivative's exhibition of the discontinuity appropriate to a surface charge ##\sigma_b## at ##z=0## .. - are 'exact' boundary conditions for solving the original problem ( Example 4.8 ), so that we may apply the method of images ( the uniqueness theorem ) ?

( Cont. ) Accordingly, this is the correct potential for our problem. In particular, the force on ##q## is :

$$ \mathbf{F} = \frac{1}{4 \pi \epsilon_0} \frac{qq_b}{(2d)^2} \hat{\mathbf{z}} = - \frac{1}{4\pi \epsilon_0}(\frac{\chi_e}{\chi_e + 2})\frac{q^2}{4d^2}\hat{\mathbf{z}}. \tag{4.54} $$

Q.3. Why the first equality in ##(4.54)## is true? Can anyone hint? What should I plug into which formula? Please comment what I should recall.

P.s. Q.4. There is additional question ( may skip.. ) In the final paragraph in the solution, Griffith wrote as follows :

전자기학 질문 2.webp


I don't understand the argument in the part highlighted in red. Could someone please explain it more friendly to me?

Can anyone teach me/ help? Thanks for reading.
 
Physics news on Phys.org
I think I understood Question 1 and Question 3. Can anyone explain about the Question 2 and 4 ? :)
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top