- #1
shizzle
- 21
- 0
Hamilton equations of flyball governor
I'm trying to find
1. The Hamiltonian
2. The Hamilton equation of motion for the flyball governor shown in problem 2 here
http://www.srl.caltech.edu/phys106/1999/Homework3.pdf
This is what i have. Can someone tell me if I'm right?
[tex]
\begin{gather*}
L = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta +2(m+M)gl\cos\theta\\
H = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta -2(m+M)gl\cos\theta\\
\partial{L}/\partial\dot{\theta} = 2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = P_\theta\\
\dot{\theta} =P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta\\
\partial{H}/\partial{P_\theta} = P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = \dot{\theta}\\
\partial{H}/\partial\theta = 2ml^2\omega^2\sin\theta\cos\theta +4Ml^2\dot{\theta}^2\sin\theta\cos\theta + 2(m+M)gl\sin\theta = -\dot{P_\theta}\\
-\dot{P_\theta}=-(ml^2\ddot{\theta}+4Ml^2\ddot{\theta}\sin^2\theta
\\
equating the two equations and solving for theta double dot, we get\\
\ddot{\theta} = \frac{ml\omega^2\sin\theta\cos\theta+2Ml\dot{\theta}^2\sin\theta\cos\theta-(m+M)g\sin\theta}{l(m+2M\sin^2\theta)}\\
\end{gather*} [/tex]
I'm trying to find
1. The Hamiltonian
2. The Hamilton equation of motion for the flyball governor shown in problem 2 here
http://www.srl.caltech.edu/phys106/1999/Homework3.pdf
This is what i have. Can someone tell me if I'm right?
[tex]
\begin{gather*}
L = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta +2(m+M)gl\cos\theta\\
H = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta -2(m+M)gl\cos\theta\\
\partial{L}/\partial\dot{\theta} = 2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = P_\theta\\
\dot{\theta} =P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta\\
\partial{H}/\partial{P_\theta} = P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = \dot{\theta}\\
\partial{H}/\partial\theta = 2ml^2\omega^2\sin\theta\cos\theta +4Ml^2\dot{\theta}^2\sin\theta\cos\theta + 2(m+M)gl\sin\theta = -\dot{P_\theta}\\
-\dot{P_\theta}=-(ml^2\ddot{\theta}+4Ml^2\ddot{\theta}\sin^2\theta
\\
equating the two equations and solving for theta double dot, we get\\
\ddot{\theta} = \frac{ml\omega^2\sin\theta\cos\theta+2Ml\dot{\theta}^2\sin\theta\cos\theta-(m+M)g\sin\theta}{l(m+2M\sin^2\theta)}\\
\end{gather*} [/tex]
Last edited: