Have a problem with this Rotational Motion question

AI Thread Summary
The discussion revolves around solving a rotational motion problem involving a wheel rolling down a hill. The initial calculations led to incorrect speeds due to a misunderstanding of energy conservation principles, particularly regarding initial kinetic energy. The correct approach involves recognizing that the wheel's initial kinetic energy must be included in the energy balance equation. By adding the height instead of subtracting it, the correct final speed of 23 m/s is derived. The key takeaway is the importance of accurately accounting for both potential and kinetic energy in such problems.
Shuo Xue
Messages
5
Reaction score
0

Homework Statement


[/B]
A wheel, of radius 200mm, rolls over the top of a hill with a speed of 20m/s and negligible friction losses. (I = 1/2mr^2)

Homework Equations


[/B]
Find the speed of the wheel when it is 10m below the top.

The Attempt at a Solution


[/B]
mgh = 1/2mv^2 + 1/2IW^2

W= v/r

mgh = 1/2mv^2 + 1/2(1/2mr^2)(v/r)^2
mgh = 1/2mv^2 + 1/4mv^2
gh = 3/4mv^2
v^2 = 4gh/3
v^2 = 4(9.81)(10)/3
v = 11.4m/s

I got v = 11.4 m/s
but my answer is incorrect as it is different from the answer given which is 23m/s.
I want to know the correct solution.

I've also tried searching for the height first.

h = (3/4v^2)/g
h = 30.58m

and then 10m below from the top

h = 20.58m

v^2 = 4gh/3
v^2 = 4(9.81)(20.58)/3
v = 16.41m/s

Which is still far from the answer also.
 
Physics news on Phys.org
h = 30.58m

I tried adding 10m to h instead of subtracting 10m

so, h = 40.58

v^2 = 4gh/3
v^2 = 4(9.81)(40.58)/3
v = 23m/s

Doing it this way, I got the correct answer.
 
Shuo Xue said:
I tried adding 10m to h instead of subtracting 10m
Do you now understand why that is correct?
 
The wheel is already rolling on the top of a hill
my mistake is I assume the initial kinetic energy is 0 but it is actually not.
So initial energy is mgh + 1/2mv^2 + 1/2IW^2mgh + 1/2mv^2 + 1/4mv^2 = 1/2mv^2 + 1/4mv^2

gh + 1/2v^2 + 1/4v^2 = 1/2v^2 + 1/4v^2

gh + 3/4v^2 = 3/4v^2

(9.81)(10) + (3/4)(20)^2 = 3/4v^2

398.1 = 3/4v^2

v^2 = 4(398.1)/3
v^2 = 530.8
v = 23m/s

Here is another way to answer the question.
This solution is more understandable for me than the earlier solution.
 
haruspex said:
Do you now understand why that is correct?

Although I got the correct answer for that, I still don't understand why do I have to add 10m to the height that I got instead of subtracting 10m to it.
 
I also cannot assume that the final potential energy is 0 so

I think this is the most understandable solution.

mgh + 1/2mv^2 + 1/2IW^2 = mgh + 1/2mv^2 + 1/2IW^2

mgh + 1/2mv^2 + 1/2mv^2 = mgh + 1/2mv^2 + 1/2mv^2

gh + 3/4v^2 = gh + 3/4v^2

(9.81)(30.58) + (3/4)(20^2) = (9.81)(20.58) + 3/4v^2

(9.81)(30.58) - (9.81)(20.58) + 300 = 3/4v^2

3/4v^2 = (9.81)(30.58-20.58) + 300

3/4v^2 = (9.81)(10) + 300

3/4v^2 = 398.1
v^2 = 530.8
v = 23m/s
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top