Heat Absorbed to Melt Ice & Warm Water to 10°C

  • Thread starter Thread starter Sabres151
  • Start date Start date
  • Tags Tags
    Heat Ice
AI Thread Summary
To determine the heat absorbed by a 4.00 kg block of ice transitioning from -20°C to water at 10°C, three energy calculations are necessary: heating the ice, melting the ice, and heating the resulting water. The first and third calculations utilize the specific heat capacities of ice and water, respectively, while the second involves the latent heat of fusion, which is the energy needed to melt the ice. The specific heat capacity of ice is 2000 J/kg°C, and for water, it is 4180 J/kg°C, with the latent heat of fusion at 335,000 J/kg. Understanding these concepts is crucial for accurately calculating the total heat absorbed. The discussion emphasizes the importance of these energy calculations in thermodynamics.
Sabres151
Messages
14
Reaction score
0
A 4.00kg block of ice is removed from a freezer where its temperature was maintained at -20C. Find the heat that the ice must absorb in order to warm up to its melting point, melt, and then the water warms up to 10.0 degrees. The specific heat capacity of ice = 2000J/kg-degrees C, the specific heat of water is 4180 J/kg-degrees C and the latent heat of fusion for ice is 335000 J/kg.

I don't even know where to start.
Something with this: Q = Cm(delta T)
DeltaT = 30 degrees C
 
Last edited:
Physics news on Phys.org
you need a 3 energies -

one to heat the ice
one to melt the ice
one to heat the water

th first and third are calculated the way you state (but with different speicifc heats, since they are different for water and ice)
the second is calculated by mass * specific heat capacity
 
stunner5000pt said:
you need a 3 energies -

one to heat the ice
one to melt the ice
one to heat the water

th first and third are calculated the way you state (but with different speicifc heats, since they are different for water and ice)
the second is calculated by mass * specific heat capacity

Ok, that clarifies a few things then. Thanks for the help Stunner. Though I'm not exactly sure what "latent heat of fusion" means, I think it applies to the mass equation..
 
stunner5000pt said:
you need a 3 energies -

one to heat the ice
one to melt the ice
one to heat the water

th first and third are calculated the way you state (but with different speicifc heats, since they are different for water and ice)
the second is calculated by mass * specific heat capacity

Ok, that clarifies a few things then. Thanks for the help Stunner. Though I'm not exactly sure what "latent heat of fusion" means, I think it applies to the mass equation..
 
stunner5000pt said:
you need a 3 energies -

one to heat the ice
one to melt the ice
one to heat the water

th first and third are calculated the way you state (but with different speicifc heats, since they are different for water and ice)
the second is calculated by mass * specific heat capacity

Ok, that clarifies a few things then. Thanks for the help Stunner. Though I'm not exactly sure what "latent heat of fusion" means, I think it applies to the mass equation..
 
Sabres151 said:
Ok, that clarifies a few things then. Thanks for the help Stunner. Though I'm not exactly sure what "latent heat of fusion" means, I think it applies to the mass equation..

latent heat of fusion is the amount of energy required per kilogram to melt the ice
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top