MHB Help Needed: I'm Stuck on Steps and Not Sure If They're Correct

  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Stuck
AI Thread Summary
The discussion revolves around a user seeking help with their steps in a mathematical problem involving vector cross products. An alternate method is suggested to simplify the process by using the equality p×q = 3p×r and applying the BAC-CAB identity to avoid tedious calculations. The user then continues the discussion by manipulating the equation and asking if their derived expression is correct. They inquire whether the term [(p.q) - (3p.r)] / (p.p) represents a scalar or lambda. The conversation emphasizes clarifying the correctness of the steps and the interpretation of the resulting expressions.
Joe20
Messages
53
Reaction score
1
I have done up some of the steps. I got stuck and not sure how to continue. I am not sure if those steps are correct. Need help on that.

View attachment 7976

View attachment 7975
 

Attachments

  • v.jpg
    v.jpg
    88.6 KB · Views: 124
  • Picture3.jpg
    Picture3.jpg
    11.8 KB · Views: 113
Last edited by a moderator:
Mathematics news on Phys.org
Hi, Alexis87.

Alexis87 said:
I have done up some of the steps. I got stuck and not sure how to continue. I am not sure if those steps are correct. Need help on that.

I did not check the details of the work you posted, so I am not suggesting that anything you did there is incorrect. The intent of this post is to suggest an alternate method that avoids the need for computing tedious cross products using vector components.

Using the equality $p\times q = 3p\times r,$ take the cross product on both left hand sides with $p$; i.e.,

$p\times q = 3p\times r\qquad\Longrightarrow\qquad p\times(p\times q)=3p\times(p\times r)$

and now use the "BAC-CAB" BAC-CAB Identity -- from Wolfram MathWorld rule and some algebra to get your desired result (noting that the various dot products you obtain from the BAC-CAB rule are constants).
 
GJA said:
Hi, Alexis87.
I did not check the details of the work you posted, so I am not suggesting that anything you did there is incorrect. The intent of this post is to suggest an alternate method that avoids the need for computing tedious cross products using vector components.

Using the equality $p\times q = 3p\times r,$ take the cross product on both left hand sides with $p$; i.e.,

$p\times q = 3p\times r\qquad\Longrightarrow\qquad p\times(p\times q)=3p\times(p\times r)$

and now use the "BAC-CAB" BAC-CAB Identity -- from Wolfram MathWorld rule and some algebra to get your desired result (noting that the various dot products you obtain from the BAC-CAB rule are constants).
Continuing from your advice:

p x (p x q) = 3p x (p x r)

p(p.q) - q(p.p) = p(3p.r) - r(3p.p)

p(p.q) - p(3p.r) = q(p.p) - 3r(p.p)

p[(p.q)-(3p.r)] = (q - 3r) (p.p)

p [(p.q)-(3p.r)] /(p.p) = q-3r => Is it correct ? then [(p.q)-(3p.r)] /(p.p) will be the scalar or lamda?
 
That's correct.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top