Help with Recurrence Equation

AI Thread Summary
The discussion centers on a recurrence equation used to calculate rotations at joints in multi-storey steel structures. The original poster is struggling to understand the iterative methods suggested in their textbook, which involve approximating values at even and odd numbered joints. Participants emphasize the need for initial values and the iterative nature of the calculations, comparing it to techniques in computational fluid dynamics. Clarifications are offered regarding the assumptions made for even numbered joints and the process of alternating calculations for convergence. Overall, the community is focused on providing guidance to help the poster navigate the complexities of the recurrence relation.
Tygra
Messages
55
Reaction score
8
TL;DR Summary
Equation that calculates joint rotations in a multi-storey structure
Hi there,

I am going through a book on multi-storey steel structures and I have come to a chapter that gives approximate methods to calculate rotations at the joints (The intersecting members) of a rigid frame. There is a recurrence equation that computes the rotations and this is given below:

equation.png


The book mentions a few strategies to solve this equation. However, I am finding it quite difficult. The book mentions that you can use iterative methods and that you can start by approximating theta(i) as:

1716036446853.png


Is there anybody that can help with this, please?

Many thanks.
 
Mathematics news on Phys.org
I've never seen a recurrence formula like the one you showed. In all of the recurrence relations I've seen, to get the n-th value in the chain, you need one or more of the preceding values, plus a starting value or values. For example, a common recurrence relation for factorial numbers is given by ##n! = n \cdot (n - 1)!##, with ##1! = 1##.
Personally, I would use the iterative formula you wrote for ##\theta_i## to calculate as many terms in the sequence as you need.
 
  • Like
Likes FactChecker
Hi Mark44,

I have no experience with reccurence relations. Its just the book called it that.

Would you be so kind to a have a read through the section of the book to see if it becomes more clear to you. Here are some images of the section. Read from equation (2.23) for the first image.



20240518_160403.jpg


20240518_160456.jpg


20240518_160507.jpg


If you are strunggling to read the text I can manually type out the section if you like?

Many thanks
 
Mark44 said:
I've never seen a recurrence formula like the one you showed. In all of the recurrence relations I've seen, to get the n-th value in the chain, you need one or more of the preceding values, plus a starting value or values. For example, a common recurrence relation for factorial numbers is given by ##n! = n \cdot (n - 1)!##, with ##1! = 1##.
Personally, I would use the iterative formula you wrote for ##\theta_i## to calculate as many terms in the sequence as you need.
Good point! This looks more like the situation with computational fluid dynamics, where the value at each point (i'th) depends on all surrounding values. That requires iteratively converging to a solution that is all compatible and consistent. I have no experience with those techniques, but I am sure that the solution depends on the initial values at all the boundary points. In this case, it would include assumptions about the initial values at both the bottom and top story.
 
Last edited:
Hi FactChecker,

well it does say in the book at even numbered joints (joint 2, 4...etc) the assumption is made that theta(i-1) = theta(i) = theta(i+1) and that it followws that:

1716056009685.png



It goes on to say that the initial values are obtained from the above formula (at even numbered joints). Next, the odd numbered joints for the first approximations are calculated from:

1716056506111.png

Next, improved values can be calculated at even numbered joints from this equation. Lastly, it says the equation is then used alternately for the set of both odd and even numbered joints until a satisfactory degree of convergence is achieved.

This is quite double dutch to me. I really need some help with it.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top