MHB Henry's question via email about an Inverse Laplace Transform

AI Thread Summary
The discussion focuses on solving an Inverse Laplace Transform problem involving a complex denominator that does not easily factor. By recognizing a specific form, the expression is transformed through completing the square, allowing for partial fraction decomposition. The coefficients for the partial fractions are determined through a system of equations, leading to a simplified form. The final result of the Inverse Laplace Transform is expressed in terms of hyperbolic functions, specifically involving sine and hyperbolic cosine. The conversation also touches on the confusion regarding the identities of individuals involved in the discussion.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5832

It's not entirely obvious what to do with this question, as the denominator does not easily factorise. However, if we realize that $\displaystyle \begin{align*} s^4 + 40\,000 = \left( s^2 \right) ^2 + 200^2 \end{align*}$ it's possible to do a sneaky completion of the square...

$\displaystyle \begin{align*} \left( s^2 \right) ^2 + 200^2 &= \left( s^2 \right) ^2 + 400\,s^2 + 200^2 - 400\,s^2 \\ &= \left( s^2 + 200 \right) ^2 - 400\,s^2 \\ &= \left( s^2 + 200 \right) ^2 - \left( 20\,s \right) ^2 \\ &= \left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) \end{align*}$

and thus it's now possible to perform partial fractions

$\displaystyle \begin{align*} \frac{A\,s + B}{s^2 - 20\,s + 200 } + \frac{C\,s + D}{s^2 + 20\,s + 200} &\equiv \frac{s^2 + 200}{\left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) } \\ \left( A\,s + B \right) \left( s^2 + 20\,s + 200 \right) + \left( C\,s + D \right) \left( s^2 - 20\,s + 200 \right) &\equiv s^2 + 200 \\ \left( A + C \right) \,s ^3 + \left( 20\,A + B - 20\,C + D \right) \, s^2 + \left( 200\,A + 20\,B + 200\,C - 20\,D \right) \, s + 200\,\left( B + D \right) &\equiv s^2 + 200 \end{align*}$

so it can be seen that $\displaystyle \begin{align*} A + C = 0 , \, \, 20\,A + B - 20\,C + D = 1 , \, \, 200\,A + 20\,B + 200\,C - 20\,D = 0 \textrm{ and } B+ D = 1 \end{align*}$, so solving the system gives

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & 0 \\ 20 & 1 & -20 & \phantom{-}1 & 1 \\ 200 & 20 & \phantom{-}200 & -20 & 0 \\ 0 & 1 & \phantom{-}0 & \phantom{-}1 & 1 \end{matrix} \right] \end{align*}$

apply R2 - 20R1 to R2 and R3 - 200R1 to R3 and we have

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & 0 \\ 0 & 1 & -40 & \phantom{-}1 & 1 \\ 0 & 20 & \phantom{-}0 & -20 & 0 \\ 0 & 1 & \phantom{-}0 & \phantom{-}1 & 1 \end{matrix} \right] \end{align*}$

apply R3 - 20R2 to R3 and R4 - R2 to R4 and we have

$\displaystyle \begin{align*} \left[ \begin{matrix} 1 & 0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 \\ 0 & 1 & -40 & \phantom{-}1 & \phantom{-}1 \\ 0 & 0 & 800 & -40 & -20 \\ 0 & 0 & \phantom{-}40 & \phantom{-}0 & \phantom{-}0 \end{matrix} \right] \end{align*}$

and thus

$\displaystyle \begin{align*} 40\,C = 0 \implies C = 0 \end{align*}$

$\displaystyle \begin{align*} 800\,C - 40\,D = -20 \implies D = \frac{1}{2} \end{align*}$

$\displaystyle \begin{align*} B - 40\,C + D = 1 \implies B = \frac{1}{2} \end{align*}$

$\displaystyle \begin{align*} A + C = 0 \implies A = 0 \end{align*}$

So the partial fraction decomposition is

$\displaystyle \begin{align*} \frac{1}{2\,\left( s^2 - 20\,s + 200 \right) } + \frac{1}{2\,\left( s^2 + 20\,s + 200 \right) } &\equiv \frac{s^2 + 200}{\left( s^2 - 20\,s + 200 \right) \left( s^2 + 20\,s + 200 \right) } \end{align*}$

So moving on to the Inverse Laplace Transform now...

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{-3\,\left( s^2 + 200 \right) }{ s^2 + 40\,000 } \right\} &= -\frac{3}{2}\,\mathcal{L}^{-1} \,\left\{ \frac{1}{s^2 - 20\,s + 200 } + \frac{1}{s^2 + 20\,s + 200 } \right\} \\ &= -\frac{3}{2}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 - 20\,s + \left( -10 \right) ^2 - \left( -10 \right) ^2 + 200 } + \frac{1}{s^2 + 20\,s + 10^2 - 10^2 + 200 } \right\} \\ &= -\frac{3}{2}\,\mathcal{L}^{-1} \, \left\{ \frac{1}{ \left( s - 10 \right) ^2 + 100 } + \frac{1}{ \left( s + 10 \right) ^2 + 100 } \right\} \\ &= -\frac{3}{2}\,\mathrm{e}^{10\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 + 10^2} \right\} - \frac{3}{2}\,\mathrm{e}^{-10\,t}\,\mathcal{L}^{-1}\,\left\{ \frac{1}{s^2 + 10^2} \right\} \\ &= -\frac{3}{2}\,\mathrm{e}^{-10\,t} \,\sin{ \left( 10\,t \right) } - \frac{3}{2}\,\mathrm{e}^{10\,t} \,\sin{ \left( 10\,t \right) } \\ &= -3\sin{ \left( 10\,t \right) } \left[ \frac{1}{2}\,\left( \mathrm{e}^{-10\,t} + \mathrm{e}^{10\,t} \right) \right] \\ &= -3\sin{ \left( 10\,t \right) } \cosh{ \left( 10\,t \right) } \end{align*}$
 

Attachments

  • inv laplace.png
    inv laplace.png
    5.1 KB · Views: 126
Mathematics news on Phys.org
I'm confused. Who is Collin's and Henry and all the others?
 
Joppy said:
I'm confused. Who is Collin's and Henry and all the others?

My students, they email me asking for help, and I direct them here...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top