Hexagon Patterns in Chemical/Molecular Makeup

AI Thread Summary
The discussion centers on the arrangement of atoms in hexagonal patterns, questioning whether these representations are accurate or merely illustrative. It is established that many atoms do indeed form hexagonal arrangements, particularly in close-packed structures common in metals. However, not all representations accurately reflect reality; for instance, cyclohexane is often depicted as a hexagon but is actually bent. Aromatic compounds, such as benzene, are typically illustrated using hexagonal shapes for clarity, despite their planar structure. The average bond angles in these compounds are determined by electron orbital configurations, influencing where bonds form. Overall, while hexagonal arrangements can be found in nature, they are often simplified in illustrations for ease of understanding.
syfry
Messages
172
Reaction score
21
TL;DR Summary
Do the hexagon shapes reflect a real pattern at the atomic level?
Are physical atoms really arranged in hexagon patterns, or is that some sort of way to represent them for illustrations in textbooks and in science articles? (i.e. atoms aren't actually arranged in any hexagon pattern)
 
Chemistry news on Phys.org
In many cases atoms do really arrange in hexagonal patterns, for example when they are arranged based on close-packing (common for many metals).

Doesn't mean every hexagonal representation exactly reflects the reality (cyclohexane is often drawn like that, but is bent), doesn't mean every metal follows close-packing.
 
Compounds containing aromatic rings are common in organic chemistry and in contrast to cyclohexane it is actually also planar. The average angles are explained from the electron orbitals where the electron cloud density peaks and thus where bonds are mainly formed. When drawing aromatic compounds it gets more readable to not write out every atom, so say a hexagon ring with a circle, or every other double bond, is shorthand for a benzene ring. If it has only single bonds (no ring), then it's cyclohexane.

https://en.wikipedia.org/wiki/Benzene#/media/File:Benzene_Representations.svg
https://en.wikipedia.org/wiki/Simple_aromatic_ring
https://en.wikipedia.org/wiki/Cyclohexane

/Fredrik
 
  • Like
Likes Hornbein and syfry
Thread 'How to make Sodium Chlorate by Electrolysis of salt water?'
I have a power supply for electrolysis of salt water brine, variable 3v to 6v up to 30 amps. Cathode is stainless steel, anode is carbon rods. Carbon rod surface area 42" sq. the Stainless steel cathode should be 21" sq. Salt is pure 100% salt dissolved into distilled water. I have been making saturated salt wrong. Today I learn saturated salt is, dissolve pure salt into 150°f water cool to 100°f pour into the 2 gallon brine tank. I find conflicting information about brine tank...
Engineers slash iridium use in electrolyzer catalyst by 80%, boosting path to affordable green hydrogen https://news.rice.edu/news/2025/engineers-slash-iridium-use-electrolyzer-catalyst-80-boosting-path-affordable-green Ruthenium is also fairly expensive (a year ago it was about $490/ troy oz, but has nearly doubled in price over the past year, now about $910/ troy oz). I tracks prices of Pt, Pd, Ru, Ir and Ru. Of the 5 metals, rhodium (Rh) is the most expensive. A year ago, Rh and Ir...
Back
Top