High energy electron positron branching ratios.

AI Thread Summary
The discussion centers on the branching ratios of high-energy electron-positron annihilation into different particle pairs. At high energies, the ratio of muon to tau production tends to unity because the mass difference is negligible compared to the photon energy involved. However, the second ratio involving electron-positron production does not tend to unity due to additional processes like scattering that affect the cross-section. The participants explore the implications of photon energy and resonance effects on particle production, concluding that the presence of multiple interaction channels complicates the expected ratios. Overall, the conversation highlights the nuances of particle physics in high-energy environments.
SteDolan
Messages
14
Reaction score
0
Homework Statement

Why does the ratio:

\frac{σ(e^- + e^+ \rightarrow μ^- + μ^+) }{σ(e^- + e^+ \rightarrow τ^- + τ^+)}

tend to unity at high energies and would you expect the same for:

\frac{σ(e^- + e^+ \rightarrow μ^- + μ^+) }{σ(e^- + e^+ \rightarrow e^- + e^+)}

The attempt at a solution

So I have a good idea of the first part:

An electron positron annihilation is going to lead to a photon. If the photon's energy is large compared to twice the rest mass of a tau then both channels are available and, if the mass difference between a muon and tau is small on the scale of the photon energy, approximately the same as far as the photon is concerned.

Now for the second part. As far as I can tell my argument applies just as well to say that the second ratio should also tend to unity but the way the question is phrased implies it doesn't :-p.

I guess this means something is wrong with my approach to justifying the first ratio tending to unity?

Thanks in advance for any help :smile:
 
Physics news on Phys.org
SteDolan said:
An electron positron annihilation is going to lead to a photon. If the photon's energy is large compared to twice the rest mass of a tau then both channels are available and, if the mass difference between a muon and tau is small on the scale of the photon energy, approximately the same as far as the photon is concerned.
Correct.

Now for the second part. As far as I can tell my argument applies just as well to say that the second ratio should also tend to unity but the way the question is phrased implies it doesn't :-p.
Your argument is valid only for the specific process you considered...
Your feeling is right, the ratio does not go to 1.
 
Thanks for the reply.

But as soon as you've got the free photon I don't understand why it would favor (or disfavor) an electron positron pair rather than a muon or tau pair.

The argument would just be if the energy is much greater than twice the muon rest mass the muon and electron are the same as far as the photon is concerned.

The only thing I can think of is that, since the photon is created by an electron positron pair, is it at a sort of resonance energy for electron positron production? This would obviously favor electron pair production.
 
SteDolan said:
But as soon as you've got the free photon I don't understand why it would favor (or disfavor) an electron positron pair rather than a muon or tau pair.
It does not, but getting a single (virtual) photon is not the only process.
There are other processes for ee->ee only.
 
  • Like
Likes 1 person
Thanks for the hint! I think I understand:

The ee -> ee interaction has a scattering channel as well as the annihilation channel. By the Feynman rules these matrix elements should be subtracted leading to a reduced ee -> ee cross section.
 
Reduced?
Are you sure?

Especially for low momentum transfers, the cross-section is large.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top