MHB High school inequality 2 |x^2y-a^2b|<A

AI Thread Summary
The discussion focuses on finding a suitable B>0 given A>0, such that the inequality |x^2y - a^2b| < A holds under specified conditions for x, y, a, and b. The initial step involves manipulating the expression |x^2 - a^2| to establish a bound using the triangle inequality. It concludes that |x^2y - a^2b| can be bounded by 3B, leading to the recommendation to set B = 1/3A. This choice ensures that the inequality |x^2y - a^2b| remains valid and less than A. The findings emphasize the relationship between the variables and the constraints necessary for the inequality to hold.
solakis1
Messages
407
Reaction score
0
Given A>0, find a B>0 such that :

for all x,y,a,b : if 0<x<1,0<y<1,0<a<1,0<b<1,and |x-a|<B,|y-b|<B,then $$|x^2y-a^2b|<A$$
 
Mathematics news on Phys.org
solakis said:
Given A>0, find a B>0 such that :

for all x,y,a,b : if 0<x<1, 0<y<1, 0<a<1, 0<b<1, and |x-a|<B, |y-b|<B, then $$|x^2y-a^2b|<A$$
[sp]First step: $|x^2-a^2| = |(x+a)(x-a)| = |x+a|x-a| \leqslant 2|x-a|$.

Next (using the triangle inequality), $|x^2y - a^2b| = |x^2y-a^2y + a^2y - a^2b| \leqslant |x^2y-a^2y| + |a^2y - a^2b| = |x^2-a^2|y + a^2|y-b| \leqslant 2|x-a| + |y-b| < 3B.$

So take $B = \frac13A$. Then $|x^2y - a^2b| < 3B = A$.[/sp]
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top